• Title/Summary/Keyword: cooling structure

Search Result 863, Processing Time 0.029 seconds

Effect of soil-structure interaction on the reliability of hyperbolic cooling towers

  • Liao, Wen;Lu, Wenda;Liu, Renhuai
    • Structural Engineering and Mechanics
    • /
    • v.7 no.2
    • /
    • pp.217-224
    • /
    • 1999
  • A semi-stochastic process model of reliability was established for hyperbolic cooling towers subjected to combined loadings of wind force, self-weight, temperature loading. Effect of the soil-structure interaction on reliability was evaluated. By involving the gust factor, an equivalent static scheme was employed to convert the dynamic model to static model. The TR combination rule was used to consider relations between load responses. An analysis example was made on the 90M cooling tower of Maoming, Guangdong of China. Numerical results show that the design not including interaction turns to be conservative.

Engine room cooling system using jet pump (제트 펌프를 이용한 엔진 룸 냉각 시스템)

  • Lim, Jeong-Woo;Lee, Sang-Hyun
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.162-167
    • /
    • 2000
  • Construction machinery includes an engine enclosure separated from a cooling system enclosure by a wall to reduce noise and advance cooling system performance. For this structure, however, the axial fan cannot be of benefit to the engine room, and so the temperature rise in the engine room makes several bad conditions. This paper proposes that hot air in engine room is evacuated tv secondary pipe using jet pump. This paper demonstrates the structure and the effect of jet pump and useful guideline on design of area, length, and shape of secondary pipe to maximize the effect of jet pump.

  • PDF

Structural Analysis of Gas Generator Regenerative Cooling Chamber (재생냉각형 가스발생기 챔버 구조해석)

  • Ryu, Chul-Sung;Kim, Hong-Jip;Choi, Hwan-Seok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.10
    • /
    • pp.1046-1052
    • /
    • 2007
  • Elastic-plastic structural analysis for regenerative cooling chamber of gas generator was performed. Uniaxial tension test was conducted for STS316L at room and high temperature conditions to get the material data necessary for the structural analysis of the chamber which was operated under thermal load and high internal pressure. Physical properties including thermal conductivity, specific heat and thermal expansion were also measured. The structural analysis for four different types of regenerative cooling chamber of gas generator revealed that increased cooling performance decreased the thermal load and strain of the cooling channel structure. The results propose that in order for the regenerative cooling gas generator chamber to have high structural stability with endurance to high mechanical and thermal loads, it is important for the chamber to be designed to have high cooling performance.

Characteristics of Cooling Down in the Enclosed Vacuum Tank by Water Driving Ejector (수 이젝터를 이용한 밀폐형 진공탱크내의 온도저감 특성)

  • Kim, Se-Hyun;Shin, You-Sik;Bae, Kang-Youl;Lee, Youn-Whan;Jeong, Hyo-Min;Chung, Han-Shik
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.700-705
    • /
    • 2003
  • The general cooling tower is a device for making a cooling water in refrigerant condensers or industrial process heat exchangers. The present cooling tower have defects with noises, complicated structure and environmental problems. In this paper, we constituted a new water cooling system by using a evaporating latent heat in an enclosed tank, and this system is consisted of an enclosed vacuum tank and water driving ejector system. Several experimental cases were carried out for improvement methods of high vacuum pressure and water cooling characteristics. The ejector performance was tested in case of water temperature variations that flows in the ejector. Based on the vacuum pressure by water driving ejector, the water cooling characteristics were investigated for the vaporized air condensing effects.

  • PDF

Effect of cooling rate on the post-fire behavior of CFST column

  • Afaghi-Darabi, Alireza;Abdollahzadeh, Gholamreza
    • Computers and Concrete
    • /
    • v.23 no.4
    • /
    • pp.281-294
    • /
    • 2019
  • The post-fire behavior of structural elements and the cooling process has always been one of the main concerns of the structural engineers. The structures can be cooled at different rates, where they affect the structure's behavior. In the present study, a numerical model has been developed using the Abaqus program to investigate the effect of cooling rate on the post-fire behavior of the CFST column. To verify the model, results of an experimental study performed on CFST columns within a full heating and cooling cycle have been used. In this model, coMParison of the residual strength has been employed in order to examine the behavior of CFST column under different cooling rates. Furthermore, a parametric study was carried out on the strength of steel and concrete, the height of the specimens, the axial load ratio and the cross-sectional shape of the specimen through the proposed model. It was observed that the cooling rate affects the behavior of the column after the fire, and thus the higher the specimen's temperature is, the more effect it has on the behavior. It was also noticed that water cooling had slightly more residual strength than natural cooling. Furthermore, it was recognized from the parametric study, that by increasing the strength of steel and concrete and the load ratio, as well as modifying the cross-sectional shape from circular to square, residual strength of column at the cooling phase was less than that of the heating phase. In addition, with reducing column height, no change was witnessed in the column behavior after the cooling phase.

Analysis on the Cooling Characteristics of a Channel with Pin-Fin Structure (핀-휜 구조물을 이용한 채널의 냉각특성 해석)

  • 신지영;손영석;이대영
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.15 no.8
    • /
    • pp.667-673
    • /
    • 2003
  • Recent trends in the electronic equipment indicate that the power consumption and heat generation in a chip increase as the components are miniaturized and the computing speed becomes faster. Suitable heat dissipation is required to ensure the guaranteed performance and reliable operation of the electronic devices. The aim of the present study is to investigate the forced-convective thermal-hydraulic characteristics of a pin-fin heat exchanger as a candidate for cooling system of the electronic devices. The influence of the structure of the pin-fin assembly on heat transfer is investigated by porous medium model. The results are compared with the experimental data or correlations of several researchers for the heat transfer coefficients for the channel flow with pin-fin arrays. Finally, the effects of design parameters such as the pin-fin diameter and the spacing are examined.

Evaluation of Effects of Rare Earth Element and Cooling Rate on the Eutectic Reaction of Flake Graphite Cast Irons by Cooling Curve Analysis (냉각곡선 분석을 통한 편상흑연주철의 공정반응에 미치는 희토류원소 및 냉각속도의 영향 평가)

  • Lee, Sang-Hwan;Park, Seung-Yeon;Lee, Sang-Mok;Kim, Myung-Ho
    • Journal of Korea Foundry Society
    • /
    • v.33 no.1
    • /
    • pp.13-21
    • /
    • 2013
  • The effects of rare earth element (R.E.) and cooling rate on the eutectic reaction of flake graphite cast irons were studied by combined analysis of macro/micro-structure and cooling curve data. The correlation between eutectic reaction parameter and macro/micro-structure was systematically investigated. Two sets of chemical compositions with the different addition of R.E. were designed to cast. Three types of molds for cylindrical specimens with the different diameters were prepared to analyze cooling rate effect. The difference between undercooling temperature and cementite eutectic temperature (${\Delta}T_1=T_{U}-T_{E,C}$), which is increased by adding R.E. and decreased by increasing cooling rate, is considered to be a suitable eutectic reaction parameter for predicting graphite morphology. According to the criterion, A-type graphite is mainly suggested to form for ${\Delta}T_1$ over $20^{\circ}C$. Eutectic reaction time (${\Delta}t$), which is decreased by adding R.E. or increasing cooling rate, is a suitable eutectic reaction parameter for predicting eutectic cell size. Eutectic cell size is found to decrease in a proportion to the decrease of ${\Delta}t$.

Analysis of Flow and Heat Transfer in Swirl Chamber for Cooling in Hot Section (고온부 냉각을 위한 스월챔버내의 유동 및 열전달 해석)

  • Lee Kang-Yeop;Kim Hyung-Mo;Han Yeoung-Min;Lee Soo-Yong
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2002.05a
    • /
    • pp.71-78
    • /
    • 2002
  • All modem, aerospace gas turbines must operate with hot stage gas temperature several hundreds of degrees hotter than the melting temperatures of the materials used in their construction. Complicated cooling schemes need to be employed in the combustor walls and In the high pressure turbine stages. Internal passages are cast or machined into the hot sections of aero-gas turbine engines and air from the compressor is used for cooling. In many cases, the cooling system is engineered to utilize jets of high velocity air, which impinge on the internal surfaces of the components. They are divided by Impinging cooling method and Vortex cooling method. Specially, Research of new cooling system(Vortex cooling method) that overcome inefficiency of film cooling and limitation of space. The focus of new cooling system that improve greatly cooling efficiency using quantity's cooling air which is less is set in surface heat transfer elevation. Therefore, In this study, the numerical analysis have been performed for characteristic of flow and thermal in the swirl chamber and compared with the flow field measurement by LDV. especially, for understanding of high heat transfer efficiency in vicinity of wall. we considered flow structure and mechanism of vortex and heat transfer characteristic in variation of Reynolds number.

  • PDF

Soil-structure interaction effects on seismic behavior of a hyperbolic cooling tower using three-parameter Vlasov foundation model

  • Karakas, Ali I.;Ozgan, Korhan;Daloglu, Ayse T.
    • Earthquakes and Structures
    • /
    • v.14 no.1
    • /
    • pp.85-94
    • /
    • 2018
  • The paper focuses on the seismic responses of a hyperbolic cooling tower resting on soil foundation represented by the three-parameter Vlasov elastic soil model. The three-parameter soil model eliminates the necessity of field testing to determine soil parameters such as reaction modulus and shear parameter. These parameters are calculated using an iterative procedure depending on the soil surface vertical deformation profile in the model. The soil and tower system are modeled in SAP2000 structural analysis program using a computing tool coded in MATLAB. The tool provides a two-way data transfer between SAP2000 and MATLAB with the help of Open Application Programming Interface (OAPI) feature of SAP2000. The response spectrum analyses of the tower system with circular V-shaped supporting columns and annular raft foundation on elastic soil are conducted thanks to the coded tool. The shell and column forces and displacements are presented for different soil conditions and fixed raft base condition to investigate the effects of soil-structure interaction. Numerical results indicate that the flexibility of soil foundation leads to an increase in displacements but a decrease in shell membrane and column forces. Therefore, it can be stated that the consideration of soil-structure interaction in the seismic response analysis of the cooling tower system provides an economical design process.

Optimal Design using Flow-structure Interaction Analysis Method of Engine Generator Cooling Fan (엔진발전기 냉각팬의 유동-구조 연성해석 기법을 이용한 최적설계)

  • Kim, Seung Chul
    • Journal of the Korean Institute of Gas
    • /
    • v.24 no.3
    • /
    • pp.47-53
    • /
    • 2020
  • In this study, the optimization design data was presented by analyzing the performance and durability of the cooling fan by one-way fluid-structure interaction analysis of the cooling fan shape used in the engine generator. For this purpose, a steady-state analysis was performed on the flow field inside the cooling fan, and the durability was analyzed by using the steady-state calculation results as input data for structural analysis. Six types were modeled for fluid analysis by changing the blade and sweep angle of the cooling fan, and the ratio of mass flow rate and torque was best in A type, but B type with relatively large mass flow rate was the best. It was judged to have flow performance. As a result of examining the structural analysis by setting the four blade thickness of the B type selected through the fluid analysis, it was judged that B Type-3 is the most suitable when considering the fatigue safety factor.