• 제목/요약/키워드: cooling structure

검색결과 856건 처리시간 0.024초

벽체 구조물의 파이프쿨링 공법 적용성 분석 (Application of Pipe-cooling Method in the Concrete Wall Structure)

  • 신경섭;김세훈;차수원
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2008년도 추계 학술발표회 제20권2호
    • /
    • pp.501-504
    • /
    • 2008
  • 최근 들어 구조물의 노후화에 따른 콘크리트 구조물의 내구성에 대한 관심이 증대되고 있고, 특히 초기재령에서 발생하는 온도응력에 의한 균열은 구조물 전체의 내구성에도 큰 영향을 미친다. 콘크리트구조물의 온도응력에 의한 균열을 제어하는 방법으로는 크게 재료 및 배합상의 방법, 설계상의 방법, 시공상의 방법으로 나눌 수 있다. 이 중에서 시공상의 방법 중 하나로 콘크리트 단면내의 온도 상승량을 감소시킬 수 있는 파이프쿨링 공법에 의한 사후냉각효과에 대해 연구를 진행하고자 한다. 지금까지 파이프쿨링 공법은 주로 기초등의 매스콘크리트에 많이 적용되었지만 새로이 벽체에도 적용하였고, 파이프쿨링 요소를 묘사할 수 있는 범용구조해석 프로그램을 이용하여 파이프쿨링 공법이 적용된 벽체구조물에 대한 온도응력해석을 수행하였다. 벽체 구조물에 쿨링 파이프의 배치에 따른 해석 결과를 바탕으로 파이프쿨링 공법의 벽체구조물에 대한 냉각효과 및 균열제어 효과를 알아보았다.

  • PDF

Recent Advances in Passive Radiative Cooling: Material Design Approaches

  • Heegyeom Jeon;Youngjae Yoo
    • Elastomers and Composites
    • /
    • 제59권1호
    • /
    • pp.22-33
    • /
    • 2024
  • Passive radiative cooling is a promising technology for cooling objects without energy input. Passive radiative cooling works by radiating heat from the surface, which then passes through the atmosphere and into space. Achieving efficient passive radiative cooling is mainly accomplished by using materials with high emissivity in the atmospheric window (8-13 ㎛). Research has shown that polymers tend to exhibit high emissivity in this spectral range. In addition to elastomers, other materials with potential for passive radiative cooling include metal oxides, carbon-based materials, and polymers. The structure of a passive radiative cooling device can affect its cooling performance. For example, a device with a large surface area will have a greater amount of surface area exposed to the sky, which increases the amount of thermal radiation emitted. Passive radiative cooling has a wide range of potential applications, including building cooling, electronics cooling, healthcare, and transportation. Current research has focused on improving the efficiency of passive radiative cooling materials and devices. With further development, passive radiative cooling can significantly affect a wide range of sectors.

그린카용 인휠 모터의 냉각 성능에 관한 연구 (A Study on Cooling Performance of In-wheel Motor for Green Car)

  • 정정훈;김성철;홍정표
    • 한국자동차공학회논문집
    • /
    • 제20권1호
    • /
    • pp.61-67
    • /
    • 2012
  • The in-wheel motor used in green car was designed and constructed for an electric direct-drive traction system. It is difficult to connect cooling water piping because the in-wheel motor is located within the wheel structure. In the air cooling structure for the in-wheel motor, a outer surface on the housing is provided with cooling grooves to increase the heat transfer area. In this study, we carried out the analysis on the fluid flow and thermal characteristics of the in-wheel motor under the effects of motor speed and heat generation. In order to check the problem of heat release, the analysis has been performed using conjugate heat transfer (conduction and convection). As a result, flow fields and temperature distribution inside the in-wheel motor were obtained for base speed condition (1250 rpm) and maximum speed condition (5000 rpm). Also, the thermo-flow characteristics analysis of in-wheel motor for vehicles was performed in consideration of ram air effect. Therefore, we checked the feasibility of the air cooling for the housing geometry having cooling grooves and investigated the cooling performance enhancement.

매스콘크리트 시험체의 수화열 해석 및 실험 (Numerical Simulation of Temperature and Stress Distribution in Mass Concrete with pipe cooling and Comparision with Experimental Measurements)

  • 주영춘;김은겸;신치범;조규영;박용남
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1999년도 봄 학술발표회 논문집(I)
    • /
    • pp.269-274
    • /
    • 1999
  • Various method have been developed for mass concrete structures to reduce the temperature increase of concrete mass due to exothermic hydration reactions of concrete compounds and thereby to avoid thermal cracks. One of the methods widely acceptable for practical use is pipe cooling, in which cooling is achieved by circulating cold water through thin-wall steel pipes embedded in the concrete. A numerical simulation was performed to investigate the effectiveness of pipe cooling. A three-dimensional finite element method was proposed to analyse the transient three-dimensional heat transfer between the hardening concrete and the cooling water in pipe and to predict the stress development during the curing process. The effects of the cement type and content and the environment were taken into consideration by the heat generation rate and the boundary conditions, respectively. In order to test the validity of the numerical simulation, a model RC structure with pipe cooling was constructed and the time-dependent temperature and stress distributions within the structure as well as the variation of the temperature of cooling water along the pipe were measured. The results of the simulation agreed well the experimental measurements. The results of this study have important implications for the optimal design of the cooling pipe layout and for the estimation of thermal stress in order to eliminate thermal cracks.

  • PDF

PHPP를 활용한 조적, 콘크리트, 목조 레이어 구성별 표준주택 냉·난방 에너지 요구량 평가 (Heating and Cooling Energy Demand Evaluating of Standard Houses According to Layer Component of Masonry, Concrete and Wood Frame Using PHPP)

  • 강유진;이준희;이화영;김수민
    • Journal of the Korean Wood Science and Technology
    • /
    • 제45권1호
    • /
    • pp.1-11
    • /
    • 2017
  • 건축물에서 냉방과 난방에 많은 양의 에너지가 소요되고 있다. 건축은 $CO_2$ 발생을 줄이고 에너지 소비 저감을 위하여 냉 난방 부하를 최소화할 필요성이 있다. 그리고 최근 주거문화는 친환경적이고 실내 쾌적성을 중시하는 방향으로 변화하면서 단독주택의 수요가 증가하고 있다. 국내 단독주택의 구조는 크게 조적조, 콘크리트조, 목조 주택으로 구분할 수 있다. 따라서 본 논문은 세 가지 구조방식(조적, 콘크리트, 목조)으로 구성된 동일 면적 단독주택의 냉 난방 부하와 에너지 요구량을 분석하였다. 구조방식별 벽체, 지붕, 바닥 레이어를 구성하였고, 각 레이어의 열관류율(U-value)은 목조 벽체와 같이 스터드를 고려해주기 위하여 PHPP 계산법을 이용하였다. 또한 스터드 유무에 따른 차이를 비교 분석하기 위하여 목조 벽체에서 스터드를 고려하지 않은 경우(비 스터드)를 분석하였다. 분석은 엑셀을 기반으로 자체 개발한 냉 난방 부하 산출 프로그램(CHLC)과 ECO2를 이용하였다. 냉 난방 부하와 에너지 요구량 결과, 목조 구조가 가장 높은 결과를 보였고 콘크리트 구조는 두 번째로 높은 값을 유지하는 것을 확인하였다. 두 구조방식은 에너지소비 측면에서 불리하다고 판단하였다. 결론적으로, 동일한 조건에서의 조적 구조는 다른 구조방식에 비하여 냉 난방 부하 및 에너지 요구량에 있어 유리하며, 목조 구조에서 스터드로 인한 열교를 제외한다면 에너지소비를 줄일 수 있다고 판단되었다.

Intelligent cooling control for mass concrete relating to spiral case structure

  • Ning, Zeyu;Lin, Peng;Ouyang, Jianshu;Yang, Zongli;He, Mingwu;Ma, Fangping
    • Advances in concrete construction
    • /
    • 제14권1호
    • /
    • pp.57-70
    • /
    • 2022
  • The spiral case concrete (SCC) used in the underground powerhouse of large hydropower stations is complex, difficult to pour, and has high requirements for temperature control and crack prevention. In this study, based on the closed-loop control theory of "multi-source sensing, real analysis, and intelligent control", a new intelligent cooling control system (ICCS) suitable for the SCC is developed and is further applied to the Wudongde large-scale underground powerhouse. By employing the site monitoring data, numerical simulation, and field investigation, the temperature control quality of the SCC is evaluated. The results show that the target temperature control curve can be accurately tracked, and the temperature control indicators such as the maximum temperature can meet the design requirements by adopting the ICCS. Moreover, the numerical results and site investigation indicate that a safety factor of the spiral case structure was sure, and no cracking was found in the concrete blocks, by which the effectiveness of the system for improving the quality of temperature control of the SCC is verified. Finally, an intelligent cooling control procedure suitable for the SCC is proposed, which can provide a reference for improving the design and construction level for similar projects.

Exposure to elevated temperatures and cooled under different regimes-a study on polypropylene concrete

  • Yaragal, Subhash C.;Ramanjaneyulu, S.
    • Advances in materials Research
    • /
    • 제5권1호
    • /
    • pp.21-34
    • /
    • 2016
  • Fire is one of the most destructive powers to which a building structure can be subjected, often exposing concrete elements to elevated temperatures. The relative properties of concrete after such an exposure are of significant importance in terms of the serviceability of buildings. Unraveling the heating history of concrete and different cooling regimes is important for forensic research or to determine whether a fire-exposed concrete structure and its components are still structurally sound or not. Assessment of fire-damaged concrete structures usually starts with visual observation of colour change, cracking and spalling. Thus, it is important to know the effect of elevated temperatures on strength retention properties of concrete. This study reports the effect of elevated temperature on the mechanical properties of the concrete specimen with polypropylene fibres and cooled differently under various regimes. In the heating cycle, the specimen were subjected to elevated temperatures ranging from $200^{\circ}C$ to $800^{\circ}C$, in steps of $200^{\circ}C$ with a retention period of 1 hour. Then they were cooled to room temperature differently. The cooling regimes studied include, furnace cooling, air cooling and sudden cooling. After exposure to elevated temperatures and cooled differently, the weight loss, residual compressive and split tensile strengths retention characteristics were studied. Test results indicated that weight and both compressive and tensile strengths significantly reduce, with an increase in temperature and are strongly dependent on cooling regimes adopted.

단조품의 등온 어닐링에 따른 미세조직 변화 (The Effect of Isothermal Annealing on Microstructure of Forged Parts)

  • 김동배;이종훈
    • 열처리공학회지
    • /
    • 제13권5호
    • /
    • pp.303-308
    • /
    • 2000
  • The ring gears of automobile parts are manufactured generally process chart of which is as follows : forging ${\rightarrow}$ annealing or normalizing ${\rightarrow}$ rough machining ${\rightarrow}$ hardening(Quenching-Tempering or carburizing process) ${\rightarrow}$ finish machining. Isothermal annealing process after forging is most effective in the side of improvment of machinability. On this study we selected two kinds of steel;SCM415, SCM435 of most universal and investigated microstructures to find out most suitable condition of heat treatment in proportion continuous cooling and isothermal annealing. As the cooling rate is $5^{\circ}C$ per minute in continuous cooling process, martensite and bainite are coexisted with ferrite and pearlite in SCM435 steel. If the cooling rate is slower than $5^{\circ}C$ per minute, microstructure were only ferrite and pearlite but formation of band structure can't be avoid. On the other hand, microstructure is only ferrite and pearlite regardless of cooling rate because carbon content of SCM415 steel is low. Moreover formation of band structure isn't exposed by faster cooling rate. Most optimal temperature of the isothermal annealing is from $650^{\circ}C$ to $680^{\circ}C$ in SCM435 steel. When holding time is 60 minute with $650^{\circ}C$, the identical ferrite and pearlite microstructures can be obtained.

  • PDF

Structural analysis and optimization of large cooling tower subjected to wind loads based on the iteration of pressure

  • Li, Gang;Cao, Wen-Bin
    • Structural Engineering and Mechanics
    • /
    • 제46권5호
    • /
    • pp.735-753
    • /
    • 2013
  • The wind load is always the dominant load of cooling tower due to its large size, complex geometry and thin-wall structure. At present, when computing the wind-induced response of the large-scale cooling tower, the wind pressure distribution is obtained based on code regulations, wind tunnel test or computational fluid dynamic (CFD) analysis, and then is imposed on the tower structure. However, such method fails to consider the change of the wind load with the deformation of cooling tower, which may result in error of the wind load. In this paper, the analysis of the large cooling tower based on the iterative method for wind pressure is studied, in which the advantages of CFD and finite element method (FEM) are combined in order to improve the accuracy. The comparative study of the results obtained from the code regulations and iterative method is conducted. The results show that with the increase of the mean wind speed, the difference between the methods becomes bigger. On the other hand, based on the design of experiment (DOE), an approximate model is built for the optimal design of the large-scale cooling tower by a two-level optimization strategy, which makes use of code-based design method and the proposed iterative method. The results of the numerical example demonstrate the feasibility and efficiency of the proposed method.

5% Rule Disclosure and Stock Trading Volume : Evidence from Korea

  • KIM, Eung-Gil;KIM, Sook-Min
    • The Journal of Asian Finance, Economics and Business
    • /
    • 제6권4호
    • /
    • pp.297-307
    • /
    • 2019
  • Despite the fact that the implementation of 5% rule is widely recognized to enhance the transparency of capital market and fairness of corporate governance market, a few evidences present information effect of 5% rule. Using 7,088 non-financial firm-year observations listed on the Korea Stock Exchange from 2006 to 2012, we analyze the relation between trading volume and 5% rule disclosure. The results show that the daily and abnormal trading volume is increased when 5% rule disclosure is released. Moreover, the trading volume is significantly increased during cooling period. Specifically, trading volume is significantly greater when one day before cooling period or the expiration day of cooling period. We also find the information effect of firms with stable ownership structure before 5% rule disclosure is relatively smaller than the firms with unstable ownership structure with unstable ownership structure. These results imply that capital market participants use the information from 5% rule disclosure and reflect in their real economic decision.