• 제목/요약/키워드: cooling rates

Search Result 503, Processing Time 0.025 seconds

The Cooling Performance of Thrust Chamber with Film Cooling (막냉각에 따른 추력실의 냉각 성능)

  • Kim, Sun-Jin;Jeong, Hae-Seung
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.9 no.1 s.24
    • /
    • pp.117-124
    • /
    • 2006
  • Experiments on film cooling were performed with a small scale rocket engine homing liquid oxygen (LOx) and Jet A-1(jet engine fuel). Film coolants(Jet A-1 and water) were injected through the film cooling injector. Film cooled length and the outside wall temperature of the combustor were determined for chamber pressure, and the different geometries(injection angle) with the flow rates of film coolant. The loss of characteristic velocity due to film cooling was determined for the case of film cooling with water and Jet A-1. As the coolant flow increases, the outside wall temperatures decrease but the decrease in the outside wall temperatures reduced over the 8 percent film coolant flow rate. The efficiency of characteristic velocity was decreased with the Increase of the film coolant flow rate.

An Experimental Study of Adsorption Chiller using Silica gel-Water (실리카겔-물계 흡착식 냉동기에 관한 실험적 연구)

  • Kwon, Oh-Kyung;Yun, Jae-Ho;Kim, Joung-Ha
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.1119-1124
    • /
    • 2006
  • The objectives of this paper are to investigate the performance of silica gel-water adsorption refrigeration system with heat recovery process from the system experiment. This system can be driven by waste heat at near ambient temperature from $60^{\circ}C$ to $90^{\circ}C$. The cooling capacity and coefficient of performance(COP) were measured from various experimental conditions. An experimental results revealed the influence of operating temperatures(hot, cooling and chilled water), water flow rates, and adsorption-desorption cycle times on cooling capacity and COP. Under the standard conditions of $80^{\circ}C$ hot water, $25^{\circ}C$ cooling water, $14^{\circ}C$ chilled water inlet temperatures and 420sec cycle time, a cooling capacity of 1.14kW and a COP for cooling of 0.55 can be achieved.

  • PDF

Towards a reduced order model of battery systems: Approximation of the cooling plate

  • Szardenings, Anna;Hoefer, Nathalie;Fassbender, Heike
    • Coupled systems mechanics
    • /
    • v.11 no.1
    • /
    • pp.43-54
    • /
    • 2022
  • In order to analyse the thermal performance of battery systems in electric vehicles complex simulation models with high computational cost are necessary. Using reduced order methods, real-time applicable model can be developed and used for on-board monitoring. In this work a data driven model of the cooling plate as part of the battery system is built and derived from a computational fluid dynamics (CFD) model. The aim of this paper is to create a meta model of the cooling plate that estimates the temperature at the boundary for different heat flow rates, mass flows and inlet temperatures of the cooling fluid. In order to do so, the cooling plate is simulated in a CFD software (ANSYS Fluent ®). A data driven model is built using the design of experiment (DOE) and various approximation methods in Optimus ®. The model can later be combined with a reduced model of the thermal battery system. The assumption and simplification introduced in this paper enable an accurate representation of the cooling plate with a real-time applicable model.

An Experimental Study on Cooling Characteristics of Mist Impinging Jet on a Flat Plate (평판에 분사된 분무충돌제트의 냉각특성에 대한 실험적 연구)

  • Jun, Snag-Uk;Jung, Won-Seok;Lee, Joon-Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.4
    • /
    • pp.511-517
    • /
    • 2003
  • An experiment is conducted to investigate the effect of air and water mass flow rates on cooling characteristics of mist impinging jet on a flat plate. The air mass flow rate ranges from 0.0 to 3.0 g/s, and water mass flow rates from 5.0 to 20.0 g/s. An air-atomizing nozzle is used fur the purpose of controlling air and water mass flow rates. The test section is designed distinctively from previous works to obtain local heat transfer coefficient distributions. Heat transfer characteristics of the mist impinging jet are explained with the aid of flow visualization. Surface temperature and heat transfer coefficient distributions become more uniform as air mass flow rate increases. The water flow rate provides substantial contribution to enhancement of cooling performance. On the other hand, The air mass flow rate weakly influences the averaged heat transfer rate when the water mass flow rate is low, but the averaged heat transfer rate Increases remarkably with the air mass flow rate in case of the high water mass flow rate.

A Study on the Performance Characteristics of an Absorption Chiller for Variable Cooling Water Flow Rate at Partial Load Conditions (흡수식 냉온수기의 부분부하에 따른 냉각수 변유량시 성능특성에 관한 연구)

  • 박찬우;조현철;강용태
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.1
    • /
    • pp.26-33
    • /
    • 2004
  • In general, an absorption chiller or heat pump is operated under the constant cooling water flow rate condition even though the system works with a partial load. The objective of this paper is to study the effect of the cooling water flow rates and the temperature of cooling water on the system performance to find the energy saving methode for the partial load operation of the double effect $H_2O$/LiBr absorption chiller. It is found that the performance of the system is sensitive to the temperature of cooling water than the cooling water flow rate, so the decrease of the performance due to reducing the cooling water flow rate can be overcome with the reduction of the cooling water temperature by 1$^{\circ}C$. The flow rate of the cooling water flow rate ranges from 50% to 100% of the flow rate at normal conditions with a partial load. It is also found that the operation cost of the cooling water pump and the cooling tower can be reduced by 23%.

Hardness and microstructural changes by cooling rate and holding time during porcelain firing of a multi-purpose dental gold alloy (다목적용 치과용 금합금의 소성 시 냉각속도와 계류시간에 따른 경도와 미세구조의 변화)

  • Cho, Mi-Hyang
    • Journal of Technologic Dentistry
    • /
    • v.33 no.4
    • /
    • pp.271-281
    • /
    • 2011
  • Purpose: The aim of this study is to investigate the changes in hardness and microstructure of a dental multipurpose alloy after simulated complete firing with controlled cooling rate and holding time by characterizing the changes in hardness and microstructure after simulated firing with various cooling rates and holding times. Methods: Before hardness testing, the specimens were solution treated and then were rapidly quenched into ice brine. The specimens were completely fired in furnace. Hardness measurements were made using a Vickers microhardness tester. The specimens were examined at 15 kV using a field emission scanning electron microscope. Results: The maximum hardness value was obtained at stage 0 after simulated firing with various cooling rates (quick cooling, stage 0, stage 1, stage 2, stage 3). By the repetitive firing, the hardness of the tested alloy decreased gradually. By holding the specimen at $500^{\circ}C$ for 10-20min after simulated firing, the hardness increased apparently. However, to hold the alloy for long periods of time in the relatively high temperature after simulated firing resulted in the formation of thick oxidation layer. The oxide film formed on the surface of the alloy after simulated complete firing with controlled cooling rate, which was mainly composed of O and Zn. Conclusion: It is reasonable to hold the alloy at $500^{\circ}C$ for 10-20min after complete firing in other to improve the final hardness of the alloy.

A Study on the Optimum Cooling Condition of the Underground Power Transmission Cable Equipped with a Separate Pipe Cooling System (간접냉각이 이용된 지중송전케이블의 적정냉각조건에 관한 연구)

  • Park, M.H;Che, G.S.;Seo, J.Y.;Kim, J.G.;Lee, Jae-Heon
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.4 no.4
    • /
    • pp.263-276
    • /
    • 1992
  • The transmission current in a power cable is determined under the condition of separate pipe cooling. To this end, the thermal analysis is conducted with the standard condition of separate pipe cooling system, which constitutes one of the underground power transmission system. The changes of transmission current in a power cable with respect to the variation of temperatures and flow rates of inlet cooling water as well as the cooling spans are also determined. As a consequnce, the corresponding transmission current is shown to vary within allowable limit, resulting in the linear variation of the current for most of the cable routes. The abrupt changes of current, however, for the given flow rate of inlet cooling water in some cooling span lead to the adverse effects on the smooth current transmission within the underground power transmission system. In practice, it is expected that the desinging of the separate pipe cooling system in conjunction with the evaluation of system capacity should take into account the effects of design condition on the inlet cooling flow rate.

  • PDF

A Second-Order Analysis of VM Heat Pumps (VM열펌프의 2차해석)

  • Choi, Y.S.;Jeong, E.S.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.8 no.2
    • /
    • pp.208-218
    • /
    • 1996
  • Performance of a VM heat pump is considerably affected by various losses, such as enthalpy dump, reheat loss, pumping loss, conduction loss and shuttle loss. A second-order analysis model of VM heat pumps, which allows consideration of the major losses, was presented. Actual heat transfer rates for heat exchangers were calculated from the heat transfer rates obtained by the adiabatic analysis and various losses. New effective temperatures of heat exchangers were calculated from the actual heat transfer rates and the mean heat transfer coefficients until there was no appreciable change in the effective temperatures. Effects of design parameters, such as phase angle, swept volume ratio, regenerator length and speed on heating capacity, cooling capacity and COP were shown.

  • PDF

Evaluation of the operating reliability on the concurrent heating-cooling system air conditioner for different refrigerant flow rates with high-head and long-line conditions (동시냉난방 시스템 에어컨의 냉매량 변화에 따른 고낙차 장배관 운전 신뢰성 평가)

  • Lee, Seung-Chan;Kim, Tae-An;Tae, Sang-Jin;Jung, Gyoo-Ha;Moon, Je-Myung;Kim, Youn-Jea
    • Proceedings of the SAREK Conference
    • /
    • 2008.11a
    • /
    • pp.304-309
    • /
    • 2008
  • The heating and cooling performances of system multi-air conditioner for various refrigerant flow rates with high-head and long-line conditions are experimentally investigated. The maximum head and tube length were 110 m and 1000 m, and the two different adjustments of refrigerant flow rates were +20 % and -20 %, respectively. The experimental system was composed of 4 outdoor units with module systems, and 13 indoor units which were joined with the mode change unit by single-tube circuit. Field tests without indoor and outdoor temperature control were performed in a general office building with two different refrigerant flow rates. Especially, the oil level in the compressor was normally maintained at the safety zone. Experimental results were prepared on the p-h diagram.

  • PDF

A Study on Dioxin Reduction Characteristics of Rapid Cooling Type Circulating Fluidized Bed Heat Exchanger (급속냉각형 순환유동층 열교환기의 다이옥신 저감성능 연구)

  • Park, Sang-il
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.1231-1236
    • /
    • 2008
  • The flow and heat transfer performance were measured at high temperatures in CFB heat exchanger with multiple risers and downcomers. The theoretical model for predicting heat exchanger performance was developed in this study. The model predictions were compared with the measured heat transfer rates to show relatively good agreement. The maximum gas cooling rate was $20,300^{\circ}C/sec$, and the dioxin reduction rate was 68%.

  • PDF