• 제목/요약/키워드: cooling period

검색결과 410건 처리시간 0.03초

Long-term land cover change near Upo Swamp and the numerical experiment on its impact on the local climate (우포늪 부근의 장기적 토지피복도 변화와 그것이 국지기후에 미치는 영향에 관한 수치실험)

  • Hae-Dong Kim;Soon-Hwan Lee
    • Journal of Environmental Science International
    • /
    • 제33권3호
    • /
    • pp.227-234
    • /
    • 2024
  • We investigated the change in land-use alteration in a 45 km × 45 km area around the Upo wetlands in 1920s(before the Japanese occupation period), 1950s(immediately Korean independence) and the period 1970s to 2000s. These data can guide in understanding surface environmental changes in the lower Nakdong River from the early 20th century to the present. The influence of the long-term decreasing trend of the wetland area at the Upo Swamp was evaluated using a high-resolution local circulation model. The cooling effect of the wetlands on surface air during the daytime in summer(e.g, early August) was approximately 2℃ greater in the 1920s than in the 2000s, which is attributed to wider water areas in the 1920s. Additionally, long-term changes in land use have caused changes in the convergence zone of local circulation wind.

Thermal Dynamics of Core and Periphery Temperature during Treadmill Sub-maximal Exercise and Intermittent Regional Body Cooling (트래드밀에서의 최대하 부하 운동과 간헐적 부위별 인체 냉각 시 심부와 말초 부위의 체온 변화)

  • Lee, Joo-Young;Koscheyev, Victor S.;Kim, Jung-Hyun;Warpeha, Joe M.
    • Journal of Korean Living Environment System
    • /
    • 제16권2호
    • /
    • pp.89-100
    • /
    • 2009
  • The present study was designed to observe the thermal dynamics of core and skin temperatures during sub-maximal treadmill exercise; to investigate the effect of regional body cooling during short rest after the treadmill exercise on the thermal dynamics. Three conditions (No cooling, Head/Hand cooling, Leg cooling) were simulated in a climatic chamber at 24±1℃ and 50±5%RH. Subjects performed two bouts of treadmill exercise at a rate of 80%HRmax followed by rest. Body cooling with a hood, long gloves, and a blanket that circulated water set at 15℃ was assigned during two bouts of rest. The results showed that (1) rectal temperature (Tre) did not show significant difference between three conditions; (2) Skin temperatures had specific features, depending on body regions. In particular, the initial fall phenomena of skin temperatures at the onset of exercise were noteworthy in the chest, thigh, calf, and finger tip. Of these, the most significant initial fall was found in finger temperature (Tfing). (3) During the period of the initial fall in skin temperatures, Tre gradually increased. (4) The magnitude of the fall of Tfing at the onset of 2nd running was on average 4.8, 5.1 and 3.4℃ for Control, HH cooling, and Leg cooling, respectively (p<0.05). The initial drop of Tfing at the onset of running was maintained for an average of 8.1, 7.9 and 6.3 minutes for Control, HH cooling, and Leg cooling, with no significant differences. In conclusion, the initial fall phenomena at the onset of treadmill exercise reflected non-thermal factors, as opposed to internal thermal status. The magnitude of the initial fall in Tfing was affected by legs cooling. Therefore, the initial fall phenomenon should be considered when interpreting the thermal status of the shell during heavy works/exercises that assigned with intermittent regional body cooling.

Influence of operation of thermal and fast reactors of the Beloyarsk NPP on the radioecological situation in the cooling pond. Part 1: Surface water and bottom sediments

  • Panov, Aleksei;Trapeznikov, Alexander;Trapeznikova, Vera;Korzhavin, Alexander
    • Nuclear Engineering and Technology
    • /
    • 제54권8호
    • /
    • pp.3034-3042
    • /
    • 2022
  • The results of radioecological monitoring of the cooling pond Beloyarsk NPP (Russia) have been presented. The influence of waste technological waters of thermal and fast NPP reactors on the content of artificial radionuclides in surface waters and bottom sediments of the Beloyarsk reservoir has been studied. The long-term dynamics of the specific activity of 60Co, 90Sr, 137Cs and 3H in the main components of the freshwater ecosystem at different distances from the source of radionuclide discharge has been estimated. Critical radionuclides (60Co and 137Cs), routes of their entry and periods of maximum discharge of radioisotopes into the cooling pond have been determined. It is shown that the technology of electricity generation at Beloyarsk NPP, based on fast reactors, has a much smaller effect on the flow of artificial radionuclides into the freshwater ecosystem of the reservoir. During the entire period of monitoring studies, the decrease in the specific activity of radionuclides from NPP origin in surface waters was 4.3-74.5 times, in bottom sediments 10-505 times. The maximum discharge of artificial radionuclides into the reservoir was noted during the period of restoration and decontamination work aimed at eliminating emergencies at the AMB thermal reactors of the first stage of the Beloyarsk NPP.

A Study on the Cooling Center Manual of Facility and Maintenance for Extreme Heat Disaster (폭염재난에 대응하는 Cooling Center 시설 및 운영기준에 관한 연구)

  • Kim, Jin-Wook
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • 제8권4호
    • /
    • pp.17-22
    • /
    • 2008
  • Including heat wave, Climate change caused 150,000 casualty in 2000 and heat waves are meteorological events that pose a serious threat to human health. A heat wave is defined as "a period of abnormally and uncomfortably hot and usually humid weather". There is a need for the prevention of health effects due to weather and climate extremes. This study intends to propose the necessity of Response System to correspond to extreme heat. And this research focused on Cooling Center manual of facility and maintenance for extreme heat disaster. It would be useful to be planned based on community and to be taken a role as an E.O.C.(Emergency Operating Center). As a conclusion elderly watching system and the requirements regional cooling center facility was proposed.

Component Analysis of Thermally Activated Building System in Residential Buildings

  • Chung, Woong June;Lee, Yu Ji;Yoo, Mi Hye;Park, Sang Hoon;Yeo, Myoung Souk;Kim, Kwang Woo
    • Architectural research
    • /
    • 제16권4호
    • /
    • pp.203-210
    • /
    • 2014
  • The packaged terminal air conditioner, the typical cooling system for the residential buildings, consumes a large amount of electricity in a short period time during peak hours. In order to reduce the peak load and conserve the electricity, the thermally activated building system can be used as a secondary system to handle the partial cooling load. However, the thermally activated building system may cause condensation and under-cooling. Thus, design of both systems should be performed with careful investigation in characteristics of both systems to amplify the advantages. Since the thermally activated building system has the time-delay effect which may cause under-cooling, the system is designed to handle the base load of the building. Hence, simple simulation with EnergyPlus was performed to observe the characteristics of cooling load in residential buildings. Once the possible range of the load handling ratio of the thermally activated building system was decided, characteristics of system was analyzed in terms of hardware component and operation parameters. The hardware components were analyzed in plant and system aspects and the operation parameter was evaluated in the thermal comfort aspect. As the load handling ratio increased, the thermal comfort increased due to the lower radiant mean temperatures. Within the range of thermal comfort, the several adjustments were made in setpoint temperature and electricity consumptions of difference cases were observed to decide which components and parameters were important for designing the systems.

Flow and Heat Transfer Characteristics in a Slot Film Cooling with Various Flow Inlet Conditions (냉각유로방식 변화에 따른 슬롯 막냉각에서의 유동 및 열전달 특성)

  • Ham, Jin-Ki;Cho, Hyung-Hee
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • 제24권6호
    • /
    • pp.870-879
    • /
    • 2000
  • An experimental investigation is conducted to improve a slot film cooling system which can be used for the cooling of gas turbine combustor liner. The tangential slots are constructed of discrete holes with different injection types which are the parallel, vertical, and combined to the slot lip. The investigation is focused on the coolant supply systems of normal-, parallel-, and counter-flow paths to the mainstream direction. A naphthalene sublimation technique has been employed to measure the local heat/mass transfer coefficients in a slot with various injection types and coolant feeding directions. The velocity distributions at the exit of slot lip for the parallel and vertical injection types are fairly uniform with mild periodical patterns with respect to the hole positions. However, the combined injection type increases the nonuniformity of flow distribution with the period equaling twice that of hole-to-hole pitch due to splitting and merging of the ejected flows. The secondary flow at the lip exit has uniform velocity distributions for the parallel and vertical injection types, which are similar to the results of a two-dimensional slot injection. In the results of local heat/mass transfer coefficient, the best cooling performance inside the slot is obtained with the vertical injection type among the three different injection types due to the effect of jet impingement. The lateral distributions of Sh with the parallel- and counter-flow paths are more uniform than the normal flow path. The averaged Sh with the injection holes are $2{\sim}5$ times higher than that of a smooth two-dimensional slot path.

Low Temperature Storage of Rough Rice Using Cold-Air in Winter(I) - Storage Characteristics after Rough Rice Cooling - (겨울철 냉기를 이용한 벼의 저온저장(I) - 벼 냉각 후 저장특성 -)

  • Lee J. S.;Han C. S.;Ham T. M.;Yon K. S.
    • Journal of Biosystems Engineering
    • /
    • 제30권3호
    • /
    • pp.155-160
    • /
    • 2005
  • The objective of this research was to establish a domestically available cooling storage technique by cold-air in winter, using winter cool air ventilation fur determining rough rice cooling method in the storage and dry bin. The rough rice storage characteristics of two test conditions, winter cool-air ventilation storage and ambient temperature storage, were evaluated from January to July 2001, using a storage and dry bin of 300-ton capacity. Results of this research are as follows: Grain temperature was from $-5.1\~-8.5^{\circ}C$ after winter cool-air ventilation, and grain initial temperature for ambient temperature bin storage was $0.3\~1.9^{\circ}C$. Moisture content of rough rice decreased from $0.28\;to\;0.93\%$ and from $1.53\;to\;1.92\%$ to compare with original moisture contents for winter cool-air ventilation, and for ambient temperature bin storage, respectively. Broken ratio of brown rice from winter cool-air ventilation bin increased from $0.16\;to\; 0.92\%$, and brown rice broken ratio was from $2.24\;to\;2.86\%$ for ambient temperature bin storage to compare with initial broken ratio. Hardness of stored rice increased along storage period increase in alt storage methods, and cooling bin storage increased rice hardness of 0.271kgf: this increasing was lower then the other methods from 0.059 to 2.239kgf. Germination rates were decreased approximately 9.03, 3.14 and $3.20\%$ for upper, middle, and bottom of ventilating winter air bin, respectively, and germination rates of 2.70, 3.47 and $4.14\%$ were approximately decreased for upper, middle, and bottom parts of ambient temperature bin storage, respectively.

Development of a Conversion Unit converting the existing air conditioner to Heat Pump System for the Emergency Shelter (재해임시주거 냉난방을 위하여 기존 에어컨을 열펌프로 전환하는 변환기 개발)

  • Song, Heon
    • Journal of the Korean Solar Energy Society
    • /
    • 제31권5호
    • /
    • pp.77-84
    • /
    • 2011
  • Korea and some other countries located in the northern hemisphere employ the air conditioner for the space cooling in the hot summer season and also some kinds of heaters for the space heating in the cold winter season. Especially in Korea, a great number of air conditioners of about 12,700,000 sets have been used these days. However, they are used for a short operation period of only 58 days a year, which results in the material and economic losses. To solve this problem and employ this system for the emergency shelter, a new conversion unit which could convert the existing air conditioner to a heat pump system for simultaneous heating and cooling was developed in this study, and the thermal performance was tested. The results indicated that the indoor air could be heated from $27^{\circ}C$ to $39^{\circ}C$ by the air conditioner converted to a heat pump system with the ambient temperature variation of $-10^{\circ}C{\sim}10^{\circ}C$, and cooled from $20^{\circ}C$ to $15^{\circ}C$ by the converted system with the ambient temperature variation of $20^{\circ}C{\sim}35^{\circ}C$. And also the heating COP increased from 3.3 to 5.3 in case of the heat exchange of the super cooling(HESC) circuit and from 3.0 to 4.0 in case of the By-pass with the ambient temperature variation of $-10^{\circ}C{\sim}10^{\circ}C$, respectively, whereas the cooling COP decreased from 3.1 to 2.1with the increase of the ambient temperature from $20^{\circ}C$ to $35^{\circ}C$.

The Estimation of Heating, Cooling Load and Economical Efficiency Analysis of Insulation Paint Coating Windows (단열 도료 코팅 창호의 냉난방부하 특성분석 및 경제성 평가)

  • Jeong, Yeol-Wha;Kim, Byoung-Soo
    • Journal of the Korean Solar Energy Society
    • /
    • 제31권6호
    • /
    • pp.95-102
    • /
    • 2011
  • The purpose of study is to estimate heating, cooling load performance and economic efficiency in office building with applied the functional paint. this paint can reduced SHGC(Solar Heat Gain Coefficient) on the glazing surface by coating. In this study, estimated to compared with double glazing, low-e glazing, IP(Insulation Paint) and IPu(Insulation UV-Cut Paint) coating glazing. As a result of this study, 1)heating & cooling load Analysis, SHGC value and U-factor of double glazing is about 0.70 and 3.29($W/m^2K$). low-E glazing is about 0.65 and 2.70($W/m^2K$). Two-side it is about 0.27 and 3.25($W/m^2K$). When compared to double glazing, annual heating & cooling load of low-E glazing, Two-side IPu and IP paint coating glazing is 3,012MWh($124kWh/m^2$), 2,910MWh($120kWh/m^2$), 2,867MWh($118.4kWh/m^2$) and 2,867MWh($118.4kWh/m^2$). It i sreduced to 2.0%, 5.2%, 6.7%, and 6.7% respectively. 2)the estimation of economic efficiency, low-e glazing installed in office building can not recover the investment within a lifetime 40years. but IPu and IP paint, two-side coating in glazing, have a payback period of 13 years respectively.

A Study on the District Community Cooling System using LNG Cold Energy (LNG 냉열이용 지역집단 냉방시스템에 대한 연구)

  • Kim, Chung-Kyun;Kim, Seung-Chul
    • Journal of the Korean Institute of Gas
    • /
    • 제14권6호
    • /
    • pp.27-30
    • /
    • 2010
  • This paper presents the system design process of district community cooling system using LNG cold energy. The newly developed LNG cooling system includes several heat exchangers, LNG storage tank, thermal mass storage tank, several cold energy storage tanks, gas air-conditioners, compressors, constant pressure regulators, cold energy and hot energy supply pipes. In addition, the gas air-conditioner system is installed to supply not sufficient cold energy due to low level of city gas consumptions during a summer period. This system design is very effective and safe to supply cold energy mass of fresh air by exchanging two thermal masses of an air and 200kcal/kg cold energy of LNG. The district community cooling system with LNG cold energy does not produce CO2 and freon gases in the air.