• Title/Summary/Keyword: cooling pattern

Search Result 261, Processing Time 0.025 seconds

A Study on the Evaluation of Cooling Demand using Cooling Gas Sales (냉방용 가스사용을 중심으로 추정한 냉방전력수요 평가)

  • KIM C.S.;Rhee C.H.
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.660-662
    • /
    • 2004
  • Cooling demand in Korea has increased constantly. Furthermore, an evaluation and savings of cooling demand has impacted on summer DSM and investment in Korea. Absorbed cooling system uses gas. It could achieve reductions in summer peak load and increase gas demand simultaneously. However its efficiency rate is lower than electric system. Gas cooling system uses separate meter. Therefore we could analyze monthly cooling demand and derive annual uses pattern. This paper analyzes demand pattern of gas cooling and its effects on electricity savings. Also this paper presents the course of policy in electricity sector on spreading of gas cooling measures.

  • PDF

Dispersion Pattern of CoolingWater of Kori Atomic Power Station Using Thermal Infrared Data (열적외선 자료에 의한 고리 원자력발전소의 냉각수 확산에 대한 연구)

  • 姜必鍾;智光薰
    • Korean Journal of Remote Sensing
    • /
    • v.3 no.2
    • /
    • pp.81-87
    • /
    • 1987
  • The study was to analysis the dispersion of the cooling water of Kori atomic power station using thermal infrared data. The dispersion pattern of the cooling water analysis clearly on the LANDSAT TM band 6. It was changed due to tidal current, that is, the cooling water disperses north-eastern direction during the low tide and southweatern direction during the high tide. The relative temperature distribution was mapped through the density slicing method on the images.

Quantitative Interpretation of Cooling Rate of Clinker and It's Effects on the Cement Strength Development (클링커 냉각속도의 정량적 해석 및 냉각속도가 시멘트 강도발현에 미치는 영향고찰)

  • Kim, Chang-Bum;Choi, Sung-Churl
    • Journal of the Korean Ceramic Society
    • /
    • v.44 no.4 s.299
    • /
    • pp.224-229
    • /
    • 2007
  • To evaluate the cooling rate of clinker quantitatively, several clinkers with different cooling rate were made in the laboratory. The X-ray diffraction pattern of Ferrite 002 reflection were measured and the parameters were calculated by using split type pseudo-Voigt function. The X-ray diffraction patterns of the Ferrite phase in the clinkers from cement manufacturing plant were analyzed by using the parameters and the analysis program was developed to calculate the cooling rate quantitatively. The cooling rate coefficients of the clinkers were calculated by using the profile fitting method of the program and the influence of cooling rate on strength was evaluated. The results show that there is a close relation between the cooling rate of clinker and the strength of cement.

Open Space Spacial Pattern Analysis from the Perspective of Urban Heat Mitigation (도시 열저감 관점에서의 오픈스페이스 토지이용 공간패턴분석)

  • Sangjun Kang
    • Journal of Environmental Impact Assessment
    • /
    • v.33 no.4
    • /
    • pp.155-163
    • /
    • 2024
  • The purpose is to explore the meaning of the open space land use space pattern from the perspective of urban heat reduction using the land-use scenario. The employed methods are as follows: (1) to calculate the cooling capacity Index for each of five land use scenarios, using the InVEST Urban Cooling Model, (2) to calculate open space entropy & morphological spatial pattern for each land use scenario, using the Guidos Spatial Pattern Toolbox, and (3) to perform a Spearman rank correlation analysis between the InVEST and Guidos results. It is found that the rank correlation is moderate between the cooling capacity Index and the open space area ratio (rho=0.50). However, other relations are low. It is observed that only the total amount of open space is likely to have a meaning from the perspective of urban heat reduction, and that other open space location spatial patterns may not have much meaning from the perspective of urban thermal environment management.

Thermal Characteristic Analysis of IPMSM for Traction Considering a Driving Pattern of Urban Railway Vehicles (도시철도차량의 운행패턴을 고려한 견인용 IPMSM의 열 특성 분석)

  • Park, Chan-Bae;Kim, Jae-Hee;Lee, Su-Gil
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.3
    • /
    • pp.431-436
    • /
    • 2014
  • In this paper, temperature change properties on the 210kW-class Interior Permanent Magnet Synchronous Motor (IPMSM) are performed with the cooling performance of a water cooling device through the thermal characteristic analysis of the IPMSM considering a real driving pattern of urban railway vehicles. First, the thermal analysis modeling of 210kW-class IPMSM, which is an alternative to the conventional induction motor, and its water cooling device is conducted. Next, the thermal characteristic analysis of the IPMSM considering a real driving pattern of urban railway vehicles is performed using 2-Dimensional FEM tool. Finally, the calculated characteristic results are analyzed. Consequently, it is confirmed that the internal temperature of the 210kW-class IPMSM may be lowered to about 42~52% by maintaining the coolant flow rate of the water cooling device (Cross sectional shape of the pipe has 220mm width and 10mm height) for 0.2kg/s level.

Solidification Analysis for Evaluation of Cooling Pattern in Bloom Type Continuous Caster (Bloom type 연주기의 냉각패턴 평가를 위한 응고해석)

  • 정영진;김영모;조기현;강충길
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.10a
    • /
    • pp.51-54
    • /
    • 2003
  • The continuous casting is primarily a heat-extraction process in which the heat transfer at various cooling zones profoundly influences quality of products. So development of numerical model is necessarily needed for more specific and clear investigations upon heat transfer mechanism at mold and secondary cooling zones. In this study, heat transfer coefficients which shows the characteristic of heat transfer mechanism in mold are calculated for more exact analysis with temperatures measured in bloom mold using optimal algorithm, and finally the validity of cooling conditions at secondary cooling zone which is actually used at field for 30 Ton bloom type continuous casting of 0.187%C is investigated. From the results of solidification analysis, the characteristic of bloom mold shows good agreements with that of previously studies by other authors and optimized cooling conditions for 0.187%C are presented.

  • PDF

Flow Characteristics of Oil Jet for Cooling a Piston (피스톤 냉각용 엔진오일 제트 유동특성)

  • Li, L.;Lee, J.H.;Jung, H.Y.;Kim, J.H.;Lee, Y.W.
    • Journal of Power System Engineering
    • /
    • v.10 no.4
    • /
    • pp.50-55
    • /
    • 2006
  • An efficient cooling system for a piston of an automotive engine is very important. Therefore a large capacity gasoline engine or diesel engine has adopted the direct injection cooling system to increase its cooling efficiency. In this direct cooling system, an cooling oil is injected to a piston directly using an oil jet and this cooling oil flows through an oil gallery inside the piston. Flow rate and injection accuracy of this cooling oil are very important because these are main factors that have influence on its efficiency. The purpose of this study is to understand the changes of flow characteristics with various curvatures and diameters of an outlet nozzle and to check whether engine oil enters into the oil gallery well or not. From this study, we found that secondary flow was formed in a curved part of jet due to centrifugal force and irregular flow pattern appeared at the jet outlet. This pattern has influence on flow characteristics of engine oil entering the gallery. These simulation results have a good agreement with experiments.

  • PDF

CSTC of High Strength Steel for ROT Process in Hot Strip Mills (열간압연 ROT에서 고강도강의 CSTC 개발)

  • Park, Cheol-Jae
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.2
    • /
    • pp.191-196
    • /
    • 2008
  • This paper proposes a cooling stop temperature control(CSTC) concept which aims at obtaining the uniform temperature and quality of the material along the longitudinal and lateral direction of the strip. The CSTC is designed using the experimental CCT(Continuous Cooling Transformation), TTT(Time Temperature Transformation) curves and the temperature control model by the heat transfer governing equation, and the temperature control simulator. The cooling pattern and the rolling speed can be solved by the CSTC. It is shown through the field test of the hot strip mill of POSCO that the phase transformation ratio of the high carbon steel is considerably improved by the proposed temperature control.

The influence of internal ring beams on the internal pressure for large cooling towers with wind-thermal coupling effect

  • Ke, Shitang;Yu, Wei;Ge, Yaojun;Zhao, in;Cao, Shuyang
    • Wind and Structures
    • /
    • v.28 no.1
    • /
    • pp.1-17
    • /
    • 2019
  • Internal ring beams are primary components of new ring-stiffened cooling towers. In this study, numerical simulation of the internal flow field of a cooling tower with three ring beams under wind-thermal coupling effect is performed. The studied cooling tower is a 220-m super-large hyperbolic indirect natural draft cooling tower that is under construction in China and will be the World's highest cooling tower, the influence of peripheral radiators in operating cooling tower is also considered. Based on the simulation, the three-dimensional effect and distribution pattern of the wind loads on inner surface of the cooling tower is summarized, the average wind pressure distributions on the inner surface before and after the addition of the ring beams are analyzed, and the influence pattern of ring beams on the internal pressure coefficient value is derived. The action mechanisms behind the air flows inside the tower are compared. In addition, the effects of internal ring beams on temperature field characteristics, turbulence kinetic energy distribution, and wind resistance are analyzed. Finally, the internal pressure coefficients are suggested for ring-stiffened cooling towers under wind-thermal coupling effect. The study shows that the influence of internal stiffening ring beams on the internal pressure and flow of cooling towers should not be ignored, and the wind-thermal coupling effect should also be considered in the numerical simulation of cooling tower flow fields. The primary conclusions presented in this paper offer references for determining the internal suction of such ring-stiffened cooling towers.

Subjective Wear Test and Fit of Women's Sports Underwear Made of Cool-Touch Fabric (냉감소재로 제작한 여성 스포츠 언더웨어의 피트성과 착용시 주관적 평가)

  • Kim, Soyoung;Lee, Heeran;Choi, Jiyoung;Hong, Kyunghi
    • The Korean Journal of Community Living Science
    • /
    • v.28 no.4
    • /
    • pp.505-514
    • /
    • 2017
  • Although studies on the development of cool touch fabrics have been conducted widely, the effects of fitted pattern on enhancing the cooling sensation are insufficient. To investigate the effect of cool-touch fabric and fit of women's sports underwear, 3D and 2D patterns of sleeveless top and sports leggings were constructed. The performance of cool touch was tested by the Qmax value and wear test with nine subjects. Objective fit evaluation was observed by 3D virtual clothing using Clo software. Subjects rated wearing sensation such as 'cooling sensation, fit, wear comfort and preferences of purchase' using Likert's scale in the environmental chamber at $25^{\circ}C$, 45 %RH. The Qmax value of the cool touch fabric was higher than that of the PET fabric, which was well reflected in 'cooling sensation', especially in the case of a tight-fitted 3D pattern. The cooling sensation of the cool-touch fabric was not significantly elevated with 3D tight pattern as long as the size of the 2D pattern was similar to that of 3D pattern. However, the purchase preference was highly correlated with 3D fit and wear comfort.