• Title/Summary/Keyword: convolutional neural network (CNN)

Search Result 978, Processing Time 0.024 seconds

An Implementation of a Convolutional Accelerator based on a GPGPU for a Deep Learning (Deep Learning을 위한 GPGPU 기반 Convolution 가속기 구현)

  • Jeon, Hee-Kyeong;Lee, Kwang-yeob;Kim, Chi-yong
    • Journal of IKEEE
    • /
    • v.20 no.3
    • /
    • pp.303-306
    • /
    • 2016
  • In this paper, we propose a method to accelerate convolutional neural network by utilizing a GPGPU. Convolutional neural network is a sort of the neural network learning features of images. Convolutional neural network is suitable for the image processing required to learn a lot of data such as images. The convolutional layer of the conventional CNN required a large number of multiplications and it is difficult to operate in the real-time on the embedded environment. In this paper, we reduce the number of multiplications through Winograd convolution operation and perform parallel processing of the convolution by utilizing SIMT-based GPGPU. The experiment was conducted using ModelSim and TestDrive, and the experimental results showed that the processing time was improved by about 17%, compared to the conventional convolution.

Two-phase flow pattern online monitoring system based on convolutional neural network and transfer learning

  • Hong Xu;Tao Tang
    • Nuclear Engineering and Technology
    • /
    • v.54 no.12
    • /
    • pp.4751-4758
    • /
    • 2022
  • Two-phase flow may almost exist in every branch of the energy industry. For the corresponding engineering design, it is very essential and crucial to monitor flow patterns and their transitions accurately. With the high-speed development and success of deep learning based on convolutional neural network (CNN), the study of flow pattern identification recently almost focused on this methodology. Additionally, the photographing technique has attractive implementation features as well, since it is normally considerably less expensive than other techniques. The development of such a two-phase flow pattern online monitoring system is the objective of this work, which seldom studied before. The ongoing preliminary engineering design (including hardware and software) of the system are introduced. The flow pattern identification method based on CNNs and transfer learning was discussed in detail. Several potential CNN candidates such as ALexNet, VggNet16 and ResNets were introduced and compared with each other based on a flow pattern dataset. According to the results, ResNet50 is the most promising CNN network for the system owing to its high precision, fast classification and strong robustness. This work can be a reference for the online monitoring system design in the energy system.

Application Research on Obstruction Area Detection of Building Wall using R-CNN Technique (R-CNN 기법을 이용한 건물 벽 폐색영역 추출 적용 연구)

  • Kim, Hye Jin;Lee, Jeong Min;Bae, Kyoung Ho;Eo, Yang Dam
    • Journal of Cadastre & Land InformatiX
    • /
    • v.48 no.2
    • /
    • pp.213-225
    • /
    • 2018
  • For constructing three-dimensional (3D) spatial information occlusion region problem arises in the process of taking the texture of the building. In order to solve this problem, it is necessary to investigate the automation method to automatically recognize the occlusion region, issue it, and automatically complement the texture. In fact there are occasions when it is possible to generate a very large number of structures and occlusion, so alternatives to overcome are being considered. In this study, we attempt to apply an approach to automatically create an occlusion region based on learning by patterning the blocked region using the recently emerging deep learning algorithm. Experiment to see the performance automatic detection of people, banners, vehicles, and traffic lights that cause occlusion in building walls using two advanced algorithms of Convolutional Neural Network (CNN) technique, Faster Region-based Convolutional Neural Network (R-CNN) and Mask R-CNN. And the results of the automatic detection by learning the banners in the pre-learned model of the Mask R-CNN method were found to be excellent.

Night-time Vehicle Detection Method Using Convolutional Neural Network (합성곱 신경망 기반 야간 차량 검출 방법)

  • Park, Woong-Kyu;Choi, Yeongyu;KIM, Hyun-Koo;Choi, Gyu-Sang;Jung, Ho-Youl
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.12 no.2
    • /
    • pp.113-120
    • /
    • 2017
  • In this paper, we present a night-time vehicle detection method using CNN (Convolutional Neural Network) classification. The camera based night-time vehicle detection plays an important role on various advanced driver assistance systems (ADAS) such as automatic head-lamp control system. The method consists mainly of thresholding, labeling and classification steps. The classification step is implemented by existing CIFAR-10 model CNN. Through the simulations tested on real road video, we show that CNN classification is a good alternative for night-time vehicle detection.

Multi-resolution DenseNet based acoustic models for reverberant speech recognition (잔향 환경 음성인식을 위한 다중 해상도 DenseNet 기반 음향 모델)

  • Park, Sunchan;Jeong, Yongwon;Kim, Hyung Soon
    • Phonetics and Speech Sciences
    • /
    • v.10 no.1
    • /
    • pp.33-38
    • /
    • 2018
  • Although deep neural network-based acoustic models have greatly improved the performance of automatic speech recognition (ASR), reverberation still degrades the performance of distant speech recognition in indoor environments. In this paper, we adopt the DenseNet, which has shown great performance results in image classification tasks, to improve the performance of reverberant speech recognition. The DenseNet enables the deep convolutional neural network (CNN) to be effectively trained by concatenating feature maps in each convolutional layer. In addition, we extend the concept of multi-resolution CNN to multi-resolution DenseNet for robust speech recognition in reverberant environments. We evaluate the performance of reverberant speech recognition on the single-channel ASR task in reverberant voice enhancement and recognition benchmark (REVERB) challenge 2014. According to the experimental results, the DenseNet-based acoustic models show better performance than do the conventional CNN-based ones, and the multi-resolution DenseNet provides additional performance improvement.

Application of Ground Penetrating Radar (GPR) coupled with Convolutional Neural Network (CNN) for characterizing underground conditions

  • Dae-Hong Min;Hyung-Koo Yoon
    • Geomechanics and Engineering
    • /
    • v.37 no.5
    • /
    • pp.467-474
    • /
    • 2024
  • Monitoring and managing the condition of underground utilities is crucial for ground stability. This study aims to determine whether images obtained using ground penetrating radar (GPR) accurately reflect the characteristics of buried pipelines through image analysis. The investigation focuses on pipelines made from different materials, namely concrete and steel, with concrete pipes tested under various diameters to assess detectability under differing conditions. A total of 400 images are acquired at locations with pipelines, and for comparison, an additional 100 data points are collected from areas without pipelines. The study employs GPR at frequencies of 200 MHz and 600 MHz, and image analysis is performed using machine learning-based convolutional neural network (CNN) techniques. The analysis results demonstrate high classification reliability based on the training data, especially in distinguishing between pipes of the same material but of different diameters. The findings suggest that the integration of GPR and CNN algorithms can offer satisfactory performance in exploring the ground's interior characteristics.

Power Analysis Attack of Block Cipher AES Based on Convolutional Neural Network (블록 암호 AES에 대한 CNN 기반의 전력 분석 공격)

  • Kwon, Hong-Pil;Ha, Jae-Cheol
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.5
    • /
    • pp.14-21
    • /
    • 2020
  • In order to provide confidential services between two communicating parties, block data encryption using a symmetric secret key is applied. A power analysis attack on a cryptosystem is a side channel-analysis method that can extract a secret key by measuring the power consumption traces of the crypto device. In this paper, we propose an attack model that can recover the secret key using a power analysis attack based on a deep learning convolutional neural network (CNN) algorithm. Considering that the CNN algorithm is suitable for image analysis, we particularly adopt the recurrence plot (RP) signal processing method, which transforms the one-dimensional power trace into two-dimensional data. As a result of executing the proposed CNN attack model on an XMEGA128 experimental board that implemented the AES-128 encryption algorithm, we recovered the secret key with 22.23% accuracy using raw power consumption traces, and obtained 97.93% accuracy using power traces on which we applied the RP processing method.

Categorization of Korean News Articles Based on Convolutional Neural Network Using Doc2Vec and Word2Vec (Doc2Vec과 Word2Vec을 활용한 Convolutional Neural Network 기반 한국어 신문 기사 분류)

  • Kim, Dowoo;Koo, Myoung-Wan
    • Journal of KIISE
    • /
    • v.44 no.7
    • /
    • pp.742-747
    • /
    • 2017
  • In this paper, we propose a novel approach to improve the performance of the Convolutional Neural Network(CNN) word embedding model on top of word2vec with the result of performing like doc2vec in conducting a document classification task. The Word Piece Model(WPM) is empirically proven to outperform other tokenization methods such as the phrase unit, a part-of-speech tagger with substantial experimental evidence (classification rate: 79.5%). Further, we conducted an experiment to classify ten categories of news articles written in Korean by feeding words and document vectors generated by an application of WPM to the baseline and the proposed model. From the results of the experiment, we report the model we proposed showed a higher classification rate (89.88%) than its counterpart model (86.89%), achieving a 22.80% improvement. Throughout this research, it is demonstrated that applying doc2vec in the document classification task yields more effective results because doc2vec generates similar document vector representation for documents belonging to the same category.

Deep Learning based Frame Synchronization Using Convolutional Neural Network (합성곱 신경망을 이용한 딥러닝 기반의 프레임 동기 기법)

  • Lee, Eui-Soo;Jeong, Eui-Rim
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.4
    • /
    • pp.501-507
    • /
    • 2020
  • This paper proposes a new frame synchronization technique based on convolutional neural network (CNN). The conventional frame synchronizers usually find the matching instance through correlation between the received signal and the preamble. The proposed method converts the 1-dimensional correlator ouput into a 2-dimensional matrix. The 2-dimensional matrix is input to a convolutional neural network, and the convolutional neural network finds the frame arrival time. Specifically, in additive white gaussian noise (AWGN) environments, the received signals are generated with random arrival times and they are used for training data of the CNN. Through computer simulation, the false detection probabilities in various signal-to-noise ratios are investigated and compared between the proposed CNN-based technique and the conventional one. According to the results, the proposed technique shows 2dB better performance than the conventional method.

HVS-Aware Single-Shot HDR Imaging Using Deep Convolutional Neural Network (시각 인지 특성과 딥 컨볼루션 뉴럴 네트워크를 이용한 단일 영상 기반 HDR 영상 취득)

  • Vien, An Gia;Lee, Chul
    • Journal of Broadcast Engineering
    • /
    • v.23 no.3
    • /
    • pp.369-382
    • /
    • 2018
  • We propose a single-shot high dynamic range (HDR) imaging algorithm using a deep convolutional neural network (CNN) for row-wise varying exposures in a single image. The proposed algorithm restores missing information resulting from under- and/or over-exposed pixels in an input image and reconstructs the raw radiance map. The main contribution of this work is the development of a loss function for the CNN employing the human visual system (HVS) properties. Then, the HDR image is obtained by applying a demosaicing algorithm. Experimental results demonstrate that the proposed algorithm provides higher-quality HDR images than conventional algorithms.