• Title/Summary/Keyword: conventional water treatment

Search Result 567, Processing Time 0.021 seconds

Perchlorate in Advanced Drinking Water Treatment Process (고도정수처리 과정에서 퍼클로레이트 이온의 농도 변화)

  • Kim, Hyun-koo;Kim, Joung-hwa;Lee, Youn-hee;Lee, Jae-ho;Kim, San
    • Journal of Korean Society on Water Environment
    • /
    • v.24 no.2
    • /
    • pp.164-168
    • /
    • 2008
  • Perchlorate, which is still unregulated, is found in tap water, posing a threat to public health. In and out of Korea, there is no clear standard for drinking water quality or discharge. To make matters worse, Perchlorate study is in its infancy in Korea. This research tracked fresh water and purified water of water purification facility A and B located at the city of D, where Nak-dong River is being utilized as the purified water. And it was found that purified water shows no particular pattern in Perchlorate concentrations but represented a higher level of concentration compared to fresh water. With utilizing the research results, the study sought the impact of activated-carbon treatment process on Perchlorate elimination and found out that Perchlorate concentrations increased 38% after the process. The result proves that conventional water purification process can't eliminate Perchlorate. Therefore, it is reasonable that Perchlorate discharge from sources should be minimized.

Technical Feasibility for Hollow-Fiber Ultrafiltration Water Treatment System and its Economic Aspects (중공사형 한외여과막 수처리 공정의 기능성과 막을 사용한 수처리공정의 경제성에 관한 연구)

  • Wang, Jin-Soo;Kim, Byung-Jick;Choi, Soo Hyoung
    • Applied Chemistry for Engineering
    • /
    • v.10 no.1
    • /
    • pp.12-18
    • /
    • 1999
  • This research was undertaken to do the technical and economical feasibility study of membrane water treatment system. For the technical feasibility study, batch water treatment system using UF(ultrafiltration) was set up and several experiments were carried out. The performance of the UF membrane was tested in terms of turbidity. The experimental results showed that the UF membrane process produced less than 1 NTU water regardless of input water turbidity. For the economical feasibility study, the cost model was analyzed and programmed for simulation. Also costs of the membrane water treatment and the conventional treatment were evaluated. The simulation results showed that the unit production cost increased when design flow or permeate flow decreased. The production cost of membrane water treatment system was lower than that of the conventional system. Both technical and economical feasibility study showed that the UF membrane water purification system was a very competitive water purification process.

  • PDF

Field instrumentation and settlement prediction of ground treated with straight-line vacuum preloading

  • Lei, Huayang;Feng, Shuangxi;Wang, Lei;Jin, Yawei
    • Geomechanics and Engineering
    • /
    • v.19 no.5
    • /
    • pp.447-462
    • /
    • 2019
  • The vacuum preloading method has been used in many countries for ground improvement and land reclamation works. A sand cushion is required as a horizontal drainage channel for conventional vacuum preloading. In terms of the dredged-fill foundation soil, the treatment effect of the conventional vacuum preloading method is poor, particularly in Tianjin, China, where a shortage of sand exists. To solve this problem, straight-line vacuum preloading without sand is widely adopted in engineering practice to improve the foundation soil. Based on the engineering properties of dredged fill in Lingang City, Tianjin, this paper presents field instrumentation in five sections and analyzes the effect of a prefabricated vertical drain (PVD) layout and a vacuum pumping method on the soft soil ground treatment. Through the arrangement of pore water pressure gauges, settlement marks and vane shear tests, the settlement, pore water pressure and subsoil bearing capacity are analyzed to evaluate the effect of the ground treatment. This study demonstrates that straight-line vacuum preloading without sand can be suitable for areas with a high water content. Furthermore, the consolidation settlement and consolidation degree system is developed based on the grey model to predict the consolidation settlement and consolidation degree under vacuum preloading; the validity of the system is also verified.

Effects of Hydrophilic Treatment by IAR Method on the Packing Characteristic Value (이온 보조 반응법에 의한 친수성 처리가 충전재 특성값에 미치는 영향)

  • Kim, Jin-Ho;Choe, Chung-Hyeon;Gang, Byeong-Ha;Lee, Jae-Heon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.4
    • /
    • pp.554-560
    • /
    • 2001
  • Hydrophilic treatment of the packing materials in a cooling tower has been made by the ion assisted reaction (IAR) method to increase the wettability of the packing materials. The effects of hydrophilic treatment of packing materials on the performance of a cooling tower have been investigated in a wide range of operating parameters, such as water flow rate, air flow rate, and the water inlet temperature. A pilot cooling tower has been designed and built to model a counter-flow cooling tower. The results obtained indicate that the packing characteristic value with hydrophilic packing could be substantially increased by 6∼19.3% than that with conventional packing in the operating ranges considered. The correlations of the packing characteristic value as a function of water-to-air ratio are suggested for a counter-flow cooling tower with hydrophilic packing as well as with conventional packing.

A Study on the Dye Wastewater Treatment by Advanced Oxidation Process (고급산화공정을 이용한 염료폐수의 처리기술 연구)

  • Kang, Tae Hee;Oh, Byung Soo;Park, Sei Joon;Kang, Min Gu;Kim, Jong Sung;Kang, Joon-Wun
    • Journal of Korean Society on Water Environment
    • /
    • v.21 no.3
    • /
    • pp.267-273
    • /
    • 2005
  • Dye wastewater generally contains strong color and non-biodegradable materials. Therefore, the conventional wastewater treatment plant can hardly meet the regulation of wastewater effluent water. In this study, a pilot plant of the conventional process followed by advanced oxidation process (AOP), was set up to treat the dying wastewater. The treatment efficiencies on the various candidate processes, such as ozone alone, UV alone, ozone/UV, $ozone/H_2O_2$, $H_2O_2/UV$ and $ozone/UV/H_2O_2$, were investigated in the various ozone and $H_2O_2$ doses. As the results, the $ozone/H_2O_2$ process, among the tested processes, showed the highest efficiency for removing color and $COD_{Cr}$. For color removal, the ozone alone process was enough without combining UV or $H_2O_2$. No significantly enhanced efficiency for removing color and $COD_{Cr}$ by UV irradiation was observed because of the very low transmittance of UV light in dye wastewater.

Ultrafiltration membranes for drinking-water production from low-quality surface water: A case study in Spain

  • Rojas-Serrano, Fatima;Alvarez-Arroyo, Rocio;Perez, Jorge I.;Plaza, Fidel;Garralon, Gloria;Gomez, Miguel A.
    • Membrane and Water Treatment
    • /
    • v.6 no.1
    • /
    • pp.77-94
    • /
    • 2015
  • Ultrafiltration membranes have several advantages over conventional drinking-water treatment. However, this technology presents major limitations, such as irreversible fouling and low removal of natural organic matter. Fouling depends heavily on the raw-water quality as well as on the operating conditions of the process, including flux, permeate recovery, pre-treatment, chemical cleaning, and backwashing. Starting with the premise that the optimisation of operating variables can improve membrane performance, different experiments were conducted in a pilot plant located in Granada (Spain). Several combinations of permeate and backwashing flow rates, backwashing frequencies, and aeration flow rates were tested for low-quality water coming from Genil River with the following results: the effluent quality did not depend on the combination of operating conditions chosen; and the membrane was effective for the removal of microorganisms, turbidity and suspended solids but the yields for the removal of dissolved organic carbon were extremely low. In addition, the threshold transmembrane pressure (-0.7 bar) was reached within a few hours and it was difficult to recover due to the low efficiency of the chemical cleanings. Moreover, greater transmembrane pressure due to fouling also increased the energy consumption, and it was not possible to lower it without compromising the permeate recovery. Finally, the intensification of aeration contributed positively to lengthening the operation times but again raised energy consumption. In light of these findings, the feasibility of ultrafiltration as a single treatment is questioned for low-quality influents.

A study on membrane technology for surface water treatment: Synthesis, characterization and performance test

  • Haan, Teow Yeit;Shah, Mubassir;Chun, Ho Kah;Mohammad, Abdul Wahab
    • Membrane and Water Treatment
    • /
    • v.9 no.2
    • /
    • pp.69-77
    • /
    • 2018
  • The use of membrane as an innovative technology for water treatment process has now widely been accepted and adopted to replace the conventional water treatment process in increasing fresh water production for various domestic and industrial purposes. In this study, ultrafiltration (UF) membranes with different formulation were fabricated via phase inversion method. The membranes were fabricated by varying the polymer concentration (16 wt%, 18 wt%, 20 wt%, and 21 wt%). A series of tests, such as field emission scanning electron microscope (FESEM), pore size and porosity, contact angle, and zeta potential were performed to characterize the membranes. The membrane performance in terms of permeation flux and rejection were evaluated using a laboratory bench-scale test unit with mine water, lake water and tube well as model feed solution. Long hour filtration study of the membranes provides the information on its fouling property. Few pore blocking mechanism models were proposed to examine the behaviour of flux reduction and to estimate the fouling parameters based on different degree of fouling. 21 wt% PVDF membrane with smaller membrane pore size showed an excellent performance for surface water treatment in which the treated water complied with NWQS class II standard.

Removal of taste and odor causing compounds in drinking water using Pulse UV System (Pulse UV 장치를 이용한 먹는 물의 이취미 유발물질 제거효과에 관한 연구)

  • Sohn, Jin-Sik;Park, Soon-Ho;Jung, Eui-Taek
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.26 no.2
    • /
    • pp.219-228
    • /
    • 2012
  • Problems due to the taste and odor in drinking water are common in treatment facilities around the world. Taste and odor are perceived by the public as the primary indicators of the safely and acceptability of drinking water, and are mainly caused by the presence of two semi-volatile compounds-2-methylisoborneol(2-MIB) and geosmin. Conventional treatment processes in water treatment plants, such as coagulation, sedimentation and chlorination have been found to be ineffective for the removal of 2-MIB and geosmin. Pulse UV system is a new UV irradiation system that is a non-mercury lamp-based alternative to currently used continuous wave systems for water disinfection. This study shows pulse UV system to be effective in treatment of these two compounds. Geosmin removal efficiency of UV process alone achieved approximately 70% at 10sec contact time. 2-MIB removal efficiency of UV only process achieved approximately 60% at 10sec contact time. The addition of $H_{2}O_{2}$ 7mg/L increased geosmin and 2-MIB removal efficiency upto approximately 94% and 91%, respectively.

Comparative performance evaluation of two UF pilot plants at the Alto da Boa Vista WTP (São Paulo, Brazil)

  • Oliveira, T.F.;Mierzwa, J.C.
    • Membrane and Water Treatment
    • /
    • v.2 no.3
    • /
    • pp.175-185
    • /
    • 2011
  • Ultrafiltration is an emerging technology for drinking water treatment because it produces better water quality as compared with conventional treatment systems. More recently, the combination of UF technology with other processes in order to improve its performance has been observed. These associations aim to maximize the contaminants removal and reduce membrane fouling. The operational performance of contaminants removal and water production of two UF pilot plants was compared. The first plant (Guarapiranga) was fed with raw water and the second plant (ABV) with pre-treated water by the coagulation, flocculation and sedimentation processes at Alto da Boa Vista WTP (Sao Paulo, Brazil). Both units operated continuously for approximately 2,500 hours, from September/2009 to January/2010. The results showed that the ABV UF pilot plant was able to operate at higher specific fluxes (6.2 $L.d^{-1}.m^{-2}.kPa^{-1}$ @ $25^{\circ}C$) than Guarapiranga (3.1 $L.d^{-1}.m^{-2}.kPa^{-1}$ @ $25^{\circ}C$). However, the number of chemical cleanings conducted in both pilot units during the considered operation period was the same (4 chemical cleanings for each plant), which shows that the pre-treatment reduced the membrane fouling. The water quality at ABV for all the variables analyzed was better, but the feed water quality was also better due to pretreatment. The rejection values for the different contaminants were higher at Guarapiranga mainly because of a pollution load reduction after pre-treatment at ABV. Even with the better performance of the ABV UF pilot plant, it is necessary to take into consideration the complexity of the complete treatment system, and also the costs involved in the construction and operation of a full-scale treatment unit.

A Study on the Basic Planning of Country Club Using Photogrammetry (사진측량을 이용한 초구장 기본 계획에 관한 연구)

  • 유복모;조기성;박성규
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.8 no.1
    • /
    • pp.31-40
    • /
    • 1990
  • In this study, sample area was selected to compare the conventional method with photogrammetic method in basic planning of country club. Also various elements of planning, such as vegetation and water system, were considered through interpretation of aerial photographs and topographic maps, vegetation maps and water system maps were made as well as digital terrain models. These were used to analyse tophographic changes and landscape. As a result of comparing with the conventional method, it was shown that photographic interpretation could give more detail values than the conventional method, and that the digital terrain model could predict changes of topography, landscape and water system with more asccuracy. Consequently, the method of digital terrain model and photographic interpretation proved to be more effective than the conventional method in the case of water treatment, and planning of landscape and land utility.

  • PDF