• Title/Summary/Keyword: conventional water treatment

Search Result 567, Processing Time 0.023 seconds

Caffeine and Carbamazepine: Detection in Nakdong River Basin and Behavior under Drinking Water Treatment Processes (Caffeine과 Carbamazepine: 낙동강 수계에서의 검출 및 정수처리 공정에서의 거동)

  • Son, Hee-Jong;Yeom, Hoon-Sik;Jung, Jong-Moon;Jang, Seong-Ho;Kim, Han-Soo
    • Journal of Environmental Science International
    • /
    • v.21 no.7
    • /
    • pp.837-843
    • /
    • 2012
  • The aims of this study were to investigated the occurrence of caffeine and carbamazepine in Nakdong river basin (8 mainstreams and 2 tributaries) and the behavior of caffeine and carbamazepine under drinking water treatment processes (conventional and advanced processes). The examination results showed that caffeine was detected at all sampling sites (5.4~558.5 ng/L), but carbamazepine was detected at five sampling sites (5.1~79.4 ng/L). The highest concentration level of caffeine and carbamazepine in the mainstream and tributaries in Nakdong river were Goryeong and Jinchun-cheon, respectively. These pharmaceutical products were completely removed when they were subject to conventional plus advanced processes of drinking water treatment processes. Conventional processes of coagulation, sedimentation and sand-filtration were not effective for their removal, while advanced processes of ozonation and biological activated carbon (BAC) filtration were effective. Among these pharmaceuticals, carbamazeoine was more subject to ozonation than caffeine.

Effect of Ohmic Heating on Thermal and Water Holding Property of Starches (옴가열이 전분의 열적 특성과 흡수력에 미치는 영향)

  • Cha, Yun-Hwan
    • The Korean Journal of Food And Nutrition
    • /
    • v.27 no.1
    • /
    • pp.112-119
    • /
    • 2014
  • Ohmic heating uses electric resistance heat which occurs equally and rapidly inside food when the electrical current is transmitted into. Prior to the study, we have researched the potato starch's thermal property changes during ohmic heating. Comparing with conventional heating, the gelatinization temperature and the range of potato starch treated by ohmic heating are increased and narrowed respectively. Herein, we have studied thermal property changes of wheat, corn, potato and sweet potato starch by ohmic heating as well as conventional heating. And then we measure the water holding capacity of starches. Annealing of starch is a heat treatment method heated at 3~4% below the gelatinization point. This treatment changes the starch's thermal property. In the DSC analysis of this study, the $T_o$, $T_p$, $T_c$ of all starch levels have increased, and the $T_c$-$T_o$ narrowed. In the ohmic heating, the treatment sample is extensively changed but not with the conventional heating. From the ohmic treatment, increases from gelatinization temperature are potato ($8.3^{\circ}C$) > wheat ($5.3^{\circ}C$) > corn ($4.9^{\circ}C$) > sweet potato ($4.5^{\circ}C$), and gelatinization ranges are potato ($7.9^{\circ}C$), wheat ($7.5^{\circ}C$), corn ($6.1^{\circ}C$) and sweet potato ($6.8^{\circ}C$). In the case of conventional treatment, water holding capacity is not changed with increasing temperature but the ohmic heating is increased. Water holding capacity is related to the degree of gelatinization for starch. This result show that when treated with below gelatinization temperature, the starches are partly gelatined by ohmic treatment. When viewing the results of the above, ohmic treatment is enhanced by heating and generating electric currents to the starch structure.

Degradation of THM precursor using $TiO_2$ photocatalytic oxidation in the water treatment processes (정수처리공정에서 $TiO_2$광촉매를 이용한 THM전구물질 제거에 관한 연구)

  • Cho Deok-Hee;Seo Su-Man
    • Journal of environmental and Sanitary engineering
    • /
    • v.19 no.2
    • /
    • pp.1-6
    • /
    • 2004
  • In Bok-Jeong water treatment plant, chlorination is the only technique used for disinfection of drinking water. This disinfecting treatment leads to the formation of trihalomethanes (THMs). This study was carried out to investigate the possibility of improving removal efficiency of THM precursor in the conventional water treatment processes by $TiO_2$ photocatalytic oxidation. Removal efficiencies of DOC, $UV_{254}$, THMFP were low in the conventional water treatment processes. With application of $TiO_2$ photocatalyst, DOC, $UV_{254}$, THMFP were reduced more effectively. As the $TiO_2$ photocatalytic reaction time increased, the removal efficiencies of DOC, $UV_{254}$, THMFP were increased. The $TiO_2$ photocatalytic removal efficiencies of DOC, $UV_{254}$, THMFP were increased with increasing $TiO_2$ dosage. However, over 0.6g/l of $TiO_2$ dosage, the efficiency reached a plateau.

Bisphenol-A Removal in Conventional Water Treatment Systems (정수처리공정에서 bisphenol-A의 제거에 관한 연구)

  • 김혜리;이윤진;박선구;남상호
    • Journal of Environmental Health Sciences
    • /
    • v.30 no.1
    • /
    • pp.59-64
    • /
    • 2004
  • This study was carried out to investigate influencing factors of bisphenol A(BPA) removal characteristic in conventional water treatment systems to be connected with coagulation, sedimentation, filtration and disinfection. The result are summarized as follows; In BPA removal, optimal doses of PAC, alum, ferric chloride were 7.5 mg Al/L, 10.0 mg AI/L, 15.0 mg Fek. PAC was most effective coagulant to remove BPA. In coagulation process, BPA removal efficiency were increased about 2% by adjusting pH of raw water as 6. At temperature rise 1$0^{\circ}C$, BPA removal efficiency were increased 0.94%. but BPA removal efficiency in sand filtration process were under 1 %ie, so that BPA was almost not removed. At free chlorine dose 1, 2 mg/L, the reaction rate constant k in the BPA removal have been calculated to be 0.397, 0.953 min$^{-1}$ . At free chlorine dose 1, 2 mg/1-, degradation reaction of BPA was completed during 10 min and BFA removal efficiencies were 97.66, 99.99% at this time.

Influence of Electric Potential on Structure and Function of Biofilm in Wastewater Treatment Reactor : Bacterial Oxidation of Organic Carbons Coupled to Bacterial Denitrification

  • NA BYUNG KWAN;SANG BYUNG IN;PARK DAE WON;PARK DOO HYUN
    • Journal of Microbiology and Biotechnology
    • /
    • v.15 no.6
    • /
    • pp.1221-1228
    • /
    • 2005
  • Carbon electrode was applied to a wastewater treatment system as biofilm media. The spatial distribution of heterotrophic bacteria in aerobic wastewater biofilm grown on carbon electrode was investigated by scanning electron microscopy, atomic force microscopy, and biomass measurement. Five volts of electric oxidation and reduction potential were charged to the carbon anode and cathode of the bioelectrochemical system, respectively, but were not charged to electrodes of a conventional system. To correlate the biofilm architecture of bacterial populations with their activity, the bacterial treatment efficiency of organic carbons was measured in the bioelectrochemical system and compared with that in the conventional system. In the SEM image, the biofilm on the anodic medium of the bioelectrochemical system looked intact and active; however, that on the carbon medium of the conventional system appeared to be shrinking or damaging. In the AFM image, the thickness of biofilm formed on the carbon medium was about two times of those on the anodic medium. The bacterial treatment efficiency of organic carbons in the bioelectrochemical system was about 1.5 times higher than that in the conventional system. Some denitrifying bacteria can metabolically oxidize $H_{2}$, coupled to reduction of $NO_{3}^{-}\;to\;N_{2}$. $H_{2}$ was produced from the cathode in the bioelectrochemical system by electrolysis of water but was not so in the conventional system. The denitrification efficiency was less than $22\%$ in the conventional system and more than $77\%$ in the bioelectrochemical system. From these results, we found that the electrochemical coupling reactions between aerobic and anaerobic reactors may be a useful tool for improvement of wastewater treatment and denitrification efficiency, without special manipulations such as bacterial growth condition control, C/N ratio (the ratio of carbon to nitrogen) control, MLSS returning, or biofilm refreshing.

Evaluation of water treatment characteristics at the improved circle secondary settling basin (개량 고속원형침전지의 수처리 특성 평가)

  • Jang, Honggyu;Cho, Youngman;Kim, Changwon
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.28 no.5
    • /
    • pp.609-614
    • /
    • 2014
  • Researcher of this study improved conventional circle secondary settling basin, through the way such as extend of inlet pipe length, introduction of device for inducting uniforming of flow, keeping of height of sludge interface. Also, we compared conventional circle settling basin to improved circle settling basin the water treatment efficiency. Result of research, when SVI is average 117, improvement rate of SS and BOD were 51.0%, 37.0% approximately compared to conventional settling basin. And when SVI is average 178, improvement rate of SS and BOD were 22.7%, 36.0% approximately. Also when SVI is average 196, improvement rate of SS and BOD were 24.7%, 30.3% approximately. When it's winter, improvement rate of SS, BOD, COD, TN and TP were 20.6%, 17.9%, 13.9%, 13.5%, 12.4% approximately. Therefore, we can be the judge, this improved settling basin can be used as the final settling basin in the waste water treatment plant.

An experimental study on decision making for multi-source water (다중수원 수처리 의사결정에 관한 실험적 연구)

  • Jung, Jungwoo;Cho, Hyeong-Rak;Lee, Sangho;Chae, Soo-Kwon
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.29 no.1
    • /
    • pp.1-9
    • /
    • 2015
  • A combined treatment system using multiple source water is becoming important as an alternative to conventional water supply for small-scale water systems. In this research, combined water treatment systems were investigated for simultaneous use of multi-source water including rainwater, ground water, river water, and reclaimed wastewater. A laboratory-scale system was developed to systematically compare various combinations of water treatment processes, including sand filtration, microfiltration (MF), granular activated carbon (GAC), and nanofiltration (NF). Results showed that the efficiency of combined water treatment systems was affected by the quality of feed waters. In addition, a simply approach based on the concept of linear combination was suggested to support a decision-making for the optimum water treatment systems with the consideration of final water quality.

The Treatment of Box-mill Wastewater Using Aerobic Cometabolism Process - Practical Plant Test - (호기성 공동대사작용에 의한 판지폐수처리 - 현장 적용 테스트 -)

  • Cho, Yong Duck;Lee, Sang Wha
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.20 no.1
    • /
    • pp.128-137
    • /
    • 2006
  • This study aims at developing the practical technology in the treatment of box-mill wastewater using the aerobic co-metabolism principle. The conventional activated sludge method exhibited the removal efficiency of $TBOD_5$ and $TCOD_{Mn}$ as 30~50% and 40~50%, respectively. Color was rather increased by 30~130% because the conventional treatment under the aerobic condition did not induce the conversion of molecular structure of dyeing agents. Meanwhile, when the aerobic co-metabolism principle was applied to the same wastewater, the removal efficiency of $TBOD_5$ and $TCOD_{Mn}$ were obtained as 92~97% and 90~94%, respectively. In particular, color was significantly reduced down to 65~85%. The enhancement of treatment efficiency was ascribed to occur not only that the non-degradables were converted to the second substrates, but also that the enzyme activity was increased as MLVSS was kept 3000mg/l or more with the first substrates injected.

Improvement on Sewerage Effluent Standard of Public Sewerage Treatment Plants (공공하수처리시설 수질기준 선진화 방안)

  • Yu, Soon-Ju;Park, Sang-Min;Kwon, Oh-Sang;Park, Su-Jeong;Yeom, Ick-Tae
    • Journal of Korean Society on Water Environment
    • /
    • v.29 no.2
    • /
    • pp.276-287
    • /
    • 2013
  • Domestic sewage contains increasingly more pharmaceuticals and personal care products (PPCPs), due to rising use of medicines, health supplement food and daily necessities. And various types of industrial wastewater from pollution sources in treatment areas could flow into the public sewerage treatment plants (PSTPs) in metropolitan areas. The conventional PSTPs are designed to treat suspended solids, biodegradable organics, nitrogen and phosphorous from residential and industrial areas and public facilities. However, toxic, conventional, and non-coventional pollutants from non-domestic sources that discharge into sewer system as well as domestic source with various chemicals could not be treated in the conventional PSTPs and discharged untreated to public basin. In this paper we aim to consider the establishment system of effluent standard of PSTPs in comparison with water quality standard of water environment and wastewater discharge regulation. And also we suggest the necessity of regulations on the pretreatment of industrial wastewater as part of efforts to improve water quality in sewerage systems and to protect public basin.

An Experimental Study on the Application of Electrolysis to Nightsoil Treatment Plant Effluent, as a Means of Advanced Treatment Techonology (전해처리법(電解處理法)에 의한 분뇨(糞尿) 2차 처리수(處理水)의 고도처리(高度處理)에 관한 연구(硏究))

  • Chung, Kyeong Jin;Kim, Dong Min;Lee, Dong Houn
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.9 no.2
    • /
    • pp.77-83
    • /
    • 1995
  • The effluent from conventional nightsoil treatment plants contains nutrients, color and chlorides, in addition to residual organics and suspended solids, and thereby causes substantial pollution problems in receving water resources. In order to verify the usefullness of electrolysis in removing those residual pollutants from such conventional nightsoil treatment plant effluent, a bench scale experiment was conducted using sufficiently dilluted human nightsoil as experiment feeds. The result showed mean removals of 45% of total phosphorus and 85% of color, in addition 87% of residual BOD, 47% of residual COD and 85% of residual SS. The optimum electric current was found to be 15 ampere and the optimum hydraulic residence time 21/2 hour.

  • PDF