• Title/Summary/Keyword: conventional reinforced concrete beam

Search Result 111, Processing Time 0.023 seconds

Lap Splice Length of Glass Fiber Reinforced Polymer (GFRP) Reinforcing Bar (GFRP 보강근의 이음성능)

  • Lee Chang-Ho;Choi Dong-Uk;Song Ki-Mo;Park Young-Hwan;You Young-Chan
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.120-123
    • /
    • 2004
  • The lap splice lengths of deformed steel reinforcing bars and GFRP bars were experimentally compared using beam specimens. The purpose was to evaluate the length required of the GFRP bar to develop strength at least equivalent to the conventional steel reinforcing bar. The main test variable was the lap splice length: 10, 20, 30 $d_b$ for the deformed steel bars and 20, 30, 40 $d_b$ for the GFRP bars. Two different types of GFRP bars were tested: (1) one with spiral-type deformation and (2) plain round bars. Elastic modulus was about 1/5 of the steel bars while the tensile strength was about 690 MPa for the GFRP bars. Nominal diameter of the GFRP bars and steel bars was 12.7 and 13 mm, respectively. Normal strength concrete (28-day $f_{cu}$ = 30 MPa) was used. For the conventional steel bars (SD400 grade), strength over 400 MPa in tension was developed using the lap splice length of 20 and 30 $f_{cu}$. Only $87\%$ of the nominal yield strength was reached with the lap splice length of 10 $d_b$. For the spiral-type deformed GFRP bars with $40-d_b$ lap splice length, 440 MPa in tension was determined. The maximum tensile strength developed of the GFRP bars with smaller lap splice lengths decreased. The plain GFRP bar was not effective in developing the tensile strength even with $40-d_b$ lap splice length. Development of the cracks on beam surface was clearly visible for the beams reinforced with the GFRP bars. Mid-span deflections, however, were significantly smaller than the comparable beams with conventional steel bars indicating potential ductility problem.

  • PDF

Evaluation on Flexural Behavior of Hybrid Beams with Rigid Joint Connecting Steel and Precast Concrete Elements (강재 보-PC 보가 강접합 연결된 하이브리드 보의 휨 거동 평가)

  • Seo, Eun-A;Yang, Keun-Hyeok;Hong, Seung-Hyun
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.1
    • /
    • pp.13-21
    • /
    • 2016
  • A hybrid precast concrete beam system with a simple rigid connection was proposed to compensate the limitations and shortcomings of the conventional bolt connection associated with the H-beams embedded into concrete beams. Three beam specimens with fixed both ends were tested under one-point top cyclic loading to explore the effectiveness of the developed hybrid beam system in transferring externally applied flexure to a column. The main parameter considered was the length ($L_s$) of H-beam, which was selected to be $0.25L_I$, $0.5L_I$, and $1.0L_I$, where $L_I$ is the distance from the support to the point of inflection. All beam specimens showed a better displacement ductility ratio than the reinforced concrete beams with the same longitudinal reinforcement index, indicating that the cyclic load-deflection curve and ductility were insignificantly affected by $L_s$. The continuous strain distribution along the beam length and the prediction of the ultimate load based on the collapse mechanism ascertained the structural adequacy of the developed rigid connection.

Shear Strength Evaluation of Steel Fiber Reinforced Concrete Coupling Beams with Conventional Reinforcements Details (일반 철근 배근 상세를 갖는 강섬유 보강 콘크리트 연결보의 전단강도 평가)

  • Seong-Hwi Song;Dong-Hee Son;Baek-Il Bae;Chang-Sik Choi
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.1
    • /
    • pp.37-45
    • /
    • 2023
  • The purpose of this study is to prevent diagonal tension failure of existing conventional coupling beams, increase the shear strength of conventional coupling beams, and quantitatively evaluate the increase. Steel fibers can improve shear strength and partially change the failure mechanism, but this is the result of research on general RC beams and columns, and research on the shear strength enhancement of conventional coupling beams for steel fiber reinforced concrete is still lacking. Therefore, in order to confirm the increased shear strength caused by steel fiber and the resulting change in failure mechanism, three specimens were fabricated with the steel fiber volume fraction as a variable (0%, 1%, 2%) and repeated loading experiments were performed. As a result, the shear strength of the specimens reinforced with steel fibers (1%, 2%) increased as the shear resistance contribution of concrete increased after the maximum strength was developed compared to the specimens without it (0%).

Large-scale cyclic test on frame-supported-transfer-slab reinforced concrete structure retrofitted by sector lead rubber dampers

  • Xin Xu;Yun Zhou;Zhang Yan Chen;Da yang Wang;Ke Jiang;Song Wang
    • Earthquakes and Structures
    • /
    • v.26 no.5
    • /
    • pp.383-400
    • /
    • 2024
  • For a conventionally repaired frame-supported-transfer-slab (FSTS) reinforced concrete (RC) structure, both the transfer slab and the beam-to-column and transfer slab-to-column joints remain vulnerable to secondary earthquakes. Aimed at improving the seismic performance of a damaged FSTS RC structure, an innovative retrofitting scheme is proposed, which adopts the sector lead rubber dampers (SLRDs) at joints after the damaged FSTS RC structure is repaired by conventional approaches. In this paper, a series of quasi-static cyclic tests was conducted on a large-scale retrofitted FSTS RC structure. The seismic performance was evaluated and the key test results, including deformation characteristics, damage pattern, hysteretic behaviour, bearing capacity and strains on key components, were reported in detail. The test results indicated that the SLRDs started to dissipate energy under the service level earthquake, and thus prevented damages on the beam-to-column and transfer slab-to-column joints during the secondary earthquakes and shifted the plastic hinges away from the beam ends. The retrofitting scheme of using SLRDs also achieved the seismic design concept of 'strong joint, weak component'. The FSTS RC structure retrofitted by the SLRDs could recover more than 85% bearing capacity of its undamaged counterpart. The hysteresis curves were featured by the inverse "S" shape, indicating good bearing capacity and hysteresis performance. The deformation capacity of the damaged FSTS RC structure retrofitted by the SLRDs met the corresponding codified requirements for the case of the maximum considered earthquake, as set out in the Chinese seismic design code. The stability of the FSTS RC structure retrofitted by the SLRDs, which was revealed by the developed stains of the RC frame and transfer slab, was improved compared with the undamaged FSTS RC structure.

Experimental Performance Evaluation of RC Beams Strengthened by TRM with Improved Bond Capacity (부착성능이 개선된 TRM 보강 RC 보의 실험적 성능평가)

  • Jeon, In Geun;Kim, Sung Jig
    • Journal of Korean Association for Spatial Structures
    • /
    • v.24 no.1
    • /
    • pp.29-36
    • /
    • 2024
  • The paper presents the experimental investigation of RC beams retrofitted with Textile Reinforced Mortar (TRM), featuring enhanced bond capacity. Anchoring systems, including an extension of retrofitting length and the use of chemical anchors, are newly employed to improve the structural performance of the RC beam retrofitted with TRM. For the experimental investigation, a total of seven shear-critical RC beams, with and without stirrups, were designed and constructed. The structural behaviors of specimens retrofitted with the proposed TRM methods were compared to those of non-retrofitted specimens or specimens strengthened with conventional TRM methods. Crack pattern, force-displacement relationship, and absorbed energy were evaluated for each specimen. The experimental results indicate a significant improvement in the shear capacity of the RC beam with the proposed retrofitting method. Therefore, it is concluded that the application of an extended retrofitting length and chemical anchors to the TRM retrofitting method can effectively enhance the bond capacity of TRM, thereby improving the shear performance of RC beams.

Experimental and numerical studies on flexural behavior of high strength concrete beams containing waste glass

  • Haido, James H.;Zainalabdeen, Marwa A.;Tayeh, Bassam A.
    • Advances in concrete construction
    • /
    • v.11 no.3
    • /
    • pp.239-253
    • /
    • 2021
  • The behavior of concrete containing waste glass as a replacement of cement or aggregate was studied previously in the most of researches, but the present investigation focuses on the recycling of waste glass powder as a substitute for silica fume in high strength concrete (HSC). This endeavor deals with the efficiency of using waste glass powder, as an alternative for silica fume, in the flexural capacity of HSC beam. Thirteen members with dimensions of 0.3 m width, 0.15 m depth and 0.9 m span length were utilized in this work. A comparison study was performed considering HSC members and hybrid beams fabricated by HSC and conventional normal concrete (CC). In addition to the experiments on the influence of glass powder on flexural behavior, numerical analysis was implemented using nonlinear finite element approach to simulate the structural performance of the beams. Same constitutive relationships were selected to model the behavior of HSC with waste glass powder or silica fume to show the matching between the modeling outputs for beams made with these powders. The results showed that the loading capacity and ductility index of the HSC beams with waste glass powder demonstrated enhancing ultimate load and ductility compared with those of HSC specimens with silica fume. The study deduced that the recycled waste glass powder is a good alternative to the pozzolanic powder of silica fume.

Strut-tie model for two-span continuous RC deep beams

  • Chae, H.S.;Yun, Y.M.
    • Computers and Concrete
    • /
    • v.16 no.3
    • /
    • pp.357-380
    • /
    • 2015
  • In this study, a simple indeterminate strut-tie model which reflects complicated characteristics of the ultimate structural behavior of continuous reinforced concrete deep beams was proposed. In addition, the load distribution ratio, defined as the fraction of applied load transferred by a vertical tie of truss load transfer mechanism, was proposed to help structural designers perform the analysis and design of continuous reinforced concrete deep beams by using the strut-tie model approaches of current design codes. In the determination of the load distribution ratio, a concept of balanced shear reinforcement ratio requiring a simultaneous failure of inclined concrete strut and vertical steel tie was introduced to ensure the ductile shear failure of reinforced concrete deep beams, and the primary design variables including the shear span-to-effective depth ratio, flexural reinforcement ratio, and compressive strength of concrete were reflected upon. To verify the appropriateness of the present study, the ultimate strength of 58 continuous reinforced concrete deep beams tested to shear failure was evaluated by the ACI 318M-11's strut-tie model approach associated with the presented indeterminate strut-tie model and load distribution ratio. The ultimate strength of the continuous deep beams was also estimated by the experimental shear equations, conventional design codes that were based on experimental and theoretical shear strength models, and current strut-tie model design codes. The validity of the proposed strut-tie model and load distribution ratio was examined through the comparison of the strength analysis results classified according to the primary design variables. The present study associated with the indeterminate strut-tie model and load distribution ratio evaluated the ultimate strength of the continuous deep beams fairly well compared with those by other approaches. In addition, the present approach reflected the effects of the primary design variables on the ultimate strength of the continuous deep beams consistently and reasonably. The present study may provide an opportunity to help structural designers conduct the rational and practical strut-tie model design of continuous deep beams.

Expanding the classic moment-curvature relation by a new perspective onto its axial strain

  • Petschke, T.;Corres, H.;Ezeberry, J.I.;Perez, A.;Recupero, A.
    • Computers and Concrete
    • /
    • v.11 no.6
    • /
    • pp.515-529
    • /
    • 2013
  • The moment-curvature relation for simple bending is a well-studied subject and the classical moment-curvature diagram is commonly found in literature. The influence of axial forces has generally been considered as compression onto symmetrically reinforced cross-sections, thus strain at the reference fiber never has been an issue. However, when dealing with integral structures, which are usually statically indeterminate in different degrees, these concepts are not sufficient. Their horizontal elements are often completely restrained, which, under imposed deformations, leads to moderate compressive or tensile axial forces. The authors propose to analyze conventional beam cross-sections with moment-curvature diagrams considering asymmetrically reinforced cross-sections under combined influence of bending and moderate axial force. In addition a new diagram is introduced that expands the common moment-curvature relation onto the strain variation at the reference fiber. A parametric study presented in this article reveals the significant influence of selected cross-section parameters.

A numerical-experimental evaluation of beams composed of a steel frame with welded and conventional stirrups

  • Goncalves, Wagner L.;Gomes, Guilherme F.;Mendez, Yohan D.;Almeida, Fabricio A.;Santos, Valquiria C.;Cunha, Sebastiao S.Jr.
    • Computers and Concrete
    • /
    • v.22 no.1
    • /
    • pp.27-37
    • /
    • 2018
  • Reinforced concrete structures are widely used in civil engineering projects around the world in different designs. Due to the great evolution in computational equipment and numerical methods, structural analysis has become more and more reliable, and in turn more closely approximates reality. Thus among the many numerical methods used to carry out these types of analyses, the finite element method has been highlighted as an optimized tool option, combined with the non-linear and linear analysis techniques of structures. In this paper, the behavior of reinforced concrete beams was analyzed in two different configurations: i) with welding and ii) conventionally lashed stirrups using annealed wire. The structures were subjected to normal and tangential forces up to the limit of their bending resistance capacities to observe the cracking process and growth of the concrete structure. This study was undertaken to evaluate the effectiveness of welded wire fabric as shear reinforcement in concrete prismatic beams under static loading conditions. Experimental analysis was carried out in order compare the maximum load of both configurations, the experimental load-time profile applied in the first configuration was used to reproduce the same loading conditions in the numerical simulations. Thus, comparisons between the numerical and experimental results of the welded frame beam show that the proposed model can estimate the concrete strength and failure behavior accurately.

Performance Analysis of SMART Frame Applied to RC Column-Beam Structures (RC 라멘조에 SMART Frame 적용 시 효용성 분석)

  • Cho, Wonhyun;Lim, Chaeyeon;Jang, Duk Bea;Kim, Sunkuk
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2015.11a
    • /
    • pp.168-169
    • /
    • 2015
  • SMART Frame is a composite precast concrete structure system to deliver the advantages of both steel frame and reinforced concrete. Many studies have established to date that SMART Frame is more advantageous than conventional frame-type structure in terms of structural stability, constructability, economic viability as well as reduction of construction schedule. However, such studies have focused primarily on wall-type or flat slab-type apartment housing structures, failing to include Rahmen structures in their scope. Accordingly, this study aims to analyze the benefits of potential application of SMART Frame to RC Rahmen structures. As the structural stability and constructability of SMART Frame is already proven, this study reviews its benefits from the perspective of cost reduction. Conclusion of this study will be used subsequently in predicting the benefits of SMART Frame when it is adapted to RC Rahmen structures.

  • PDF