• Title/Summary/Keyword: conventional natural gas

Search Result 120, Processing Time 0.031 seconds

A Study on the Characteristic of Conversion Efficiency for Three-way Catalyst in Hydrogen-Natural Gas Blend Fueled Engine (수소-천연가스 혼합연료 엔진의 삼원촉매 전환효율 특성 연구)

  • Park, Cheol-Woong;Yi, Ui-Hyung;Kim, Chang-Gi;Lee, Janghee
    • Journal of the Korean Institute of Gas
    • /
    • v.20 no.6
    • /
    • pp.23-30
    • /
    • 2016
  • The conventional natural gas engine realized lean combustion for the improved efficiency. However, in order to cope with exhaust gas regulations enforced gradually, the interest has shifted at the stoichiometric mixture combustion system. The stoichiometric mixture combustion method has the advantage of a three-way catalyst utilization whose purification efficiency is high, but the problem of thermal durability and the fuel economy remains as a challenge. Hydrogen-natural gas blend fuel (HCNG) can increase the rate of exhaust gas recirculation (EGR) because the hydrogen increases burning speed and lean flammability limit. The increase in the EGR rate can have a positive impact on heat resistance of the engine due to the decreased combustion temperature, and further can increase the compression ratio for efficient combustion. In this study, to minimize the exhaust emission developed HCNG engine with stoichiometric combustion method, developed three-way catalyst was applied to evaluate the conversion characteristics. The tests were carried out during the steady state and transient operating conditions, and the results were compared for both the conventional and proto-three-way catalyst of HCNG engine for city buses.

Review on the water-gas shift process for a coal SNG project (석탄 SNG 생산설비의 수성가스전환 공정 분석)

  • Kim, Youngdo;Shin, Yongseung
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.75.1-75.1
    • /
    • 2011
  • Coal gasification is considered as one of the most prospective technologies in energy field since it can be utilized for various products such as electricity, SNG (Synthetic Natural Gas or Substitute Natural Gas) and other chemical products. Among those products from coal gasification, SNG is emerging as a very lucrative product due to the rising prices of oil and natural gas, especially in Asian countries. The process of SNG production is very similar to the conventional IGCC in that the overall process is highly dependent on the type of gasifier and coal rank. However, there are some differences between SNG production and IGCC, which is that SNG plant requires higher oxygen purity from oxygen plant and more complex gas cleanup processes including water-gas shift reaction and methanation. Water-gas shift reaction is one of the main process in SNG plant because it is a starting point for the latter gas cleanup processes. For the methanation process, syngas is required to have a composition of $H_2$/CO = 3. This study reviewed various considerations for water-gas shift process in a conceptual design on an early stage like a feasibility study for a real project. The factors that affect the design parameters of water-gas shift reaction include the coal properties, the type of gasifier, the overall thermal efficiency of the plant and so on. Water-gas shift reaction is a relatively proven technology compared to the other processes in SNG plant so that it can reduce technological variability when designing a SNG project.

  • PDF

An Experimental Study on the Flame Stability of Natural Gas/Air Mixture on the Metal Mesh (금속매쉬에서 천연가스/공기 표면연소의 화염안정성에 관한 실험적 연구)

  • You, Hyun-Seok;Lee, Hyun-Chan;Lee, Joong-Sung
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.49-53
    • /
    • 2001
  • A conventional flame type gas combustion major portion of heat is transferred to the body by convection due to small radiant ability of the gas flame. Increasing the radiation component of heat flux in the combustion zone allows to augment the efficiency of gas utilization. Such effect can be reached by using radiative gas burner applied to metal mesh combustion. Basically the gas radiant burner consists of metallic mesh of high heat resisting steels. In terms of this regards, we have made the burner consisted of metal mesh and measured the radiative flame stability of natural gas/air mixture on the metal mesh burner. The pressure loss through the metal mesh is defined by pressure-velocity slope. The more increased the pressure-velocity slope of the metal mesh is, the wider the stable zone of radiave flame on the metal mesh burner is. And the augmentation of mixture flowrate through the metal mesh make narrow the permissible range of equivalence ratio.

  • PDF

Improvement of Thermal Efficiency using Atkinson Cycle in a High-Compression Ratio, Spark-Ignition, Natural Gas Engine for Power Generation (고압축비 전기점화 천연가스 발전용 엔진에서 앳킨슨 사이클 적용을 통한 열효율 향상)

  • Junsun Lee;Hyunwook Park;Seungmook Oh;Changup Kim;Yonggyu Lee;Kernyong Kang
    • Journal of ILASS-Korea
    • /
    • v.28 no.2
    • /
    • pp.55-61
    • /
    • 2023
  • Natural gas is a high-octane fuel that is effective in controlling knocking combustion. In addition, as a low-carbon fuel with a high hydrogen-carbon ratio, it emits less carbon dioxide and almost no particulate matter compared to conventional fossil fuels. Stoichiometric combustion engines equipped with a three-way catalyst are useful in various fields such as transportation and power generation because of their excellent exhaust emission reduction performance. However, stoichiometric combustion engines have a disadvantage of lower thermal efficiency compared to lean combustion engines. In this study, a combination of high compression ratio and Atkinson cycle was implemented in a 11 liter, 6-cylinder, spark-ignition engine to improve the thermal efficiency of the stoichiometric engine. As a result, pumping and friction losses were reduced and the operating range was extended with optimized Atkinson camshaft. Based on the exhaust gas limit temperature of 730℃, the maximum load and thermal efficiency were improved to BMEP 0.66 MPa and BTE 35.7% respectively.

A Study on the Gas Hydrate Productivity on the Sediment Properties (퇴적층 물성이 가스하이드레이트 생산성에 미치는 영향 연구)

  • Park, Seoung-Soo;Ju, Woo-Sung;Han, Jeong-Min;Lee, Kye-Jung;Lee, Jeong-Hwan
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.192-195
    • /
    • 2008
  • Conventional gas deposits consist of pressurized gas held in porous and permeable reservoir rocks and its recovery takes place where the natural pressure of the gas reservoir forces gas to the surface. But gas hydrate is a crystalline solid, its prospects require reservoir rock properties approprate porosity, permeability with mapping of temperature and pressure conditions to define the hydrate stability zone. In this study, we have carried out to investigate the dissociation characteristics of methane hydrates and the productivities of dissociated gas and water with depressurization scheme. Also, it has been conducted the flowing behavior of the dissociated gas and water in porous rock and the efficiency of the production.

  • PDF

Synthesized Oil Manufacturing Technology from Natural Gas, GTL (천연가스로부터 합성유 제조 기술, GTL(Gas To Liquids))

  • Bae, Ji-Han;Lee, Won-Su;Lee, Heoung-Yeoun;Kim, Yong-Heon
    • The Korean Journal of Petroleum Geology
    • /
    • v.14 no.1
    • /
    • pp.45-52
    • /
    • 2008
  • The GTL(Gas to Liquids) technology, manufacturing synthesized oil from natural gas, had been developed about 1920 for the military purpose by Fischer and Tropsch, German scientists. And 1960, Sasol company had started commercializing the FT(Fischer-Tropsch) synthesis technology, for the transport fuel in South Africa. Until a recent date, the commercialization of GTL technology had been delayed by low oil price. But concern about depletion of petroleum resources, and development in synthesizing technology lead to spotlight on the GTL businesses. Especially, Qatar, which has rich natural gas fields, aims at utilizing natural gas like conventional oil resources. Therefore, around this nation, GTL plants construction has been promoted. There are mainly 3 processes to make GTL products(Diesel, Naphtha, lube oil, etc) from natural gas. The first is synthesis gas generation unit reforming hydrogen and carbomonoxide from natural gas. The second is FT synthesis unit converting synthesized gas to polymeric chain-hydrocarbon. The third is product upgrading unit making oil products from the FT synthesized oil. There are quite a little sulfur, nitrogen, and aromatic compounds in GTL products. GTL product has environmental premium in discharging less harmful particles than refinery oil products from crude to the human body. In short, the GTL is a clean technology, easier transportation mean, and has higher stability comparing to LNG works.

  • PDF

Combustion and Emission Characteristics in CNG Engine with SCV (SCV를 장착한 CNG 엔진의 연소 및 배출가스 특성)

  • 김진영;박원옥;공태원;하종률
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.3
    • /
    • pp.1-6
    • /
    • 2003
  • Natural gas is one of the promising alternative fuels because of the abundant deposits and the cleanness of emission gas. CNG has a lot of merits except lower burning speed has a slow disadvantage. One way to overcome the disadvantage is to raise a turbulence intensity. We give various intake for changing turbulence intensity in the cylinder by three kinds of swirl control valve with a way to raise a turbulence intensity. In the present study, a $1.8\ell$ conventional gasoline engine is modified to use a CNG as a fuel instead of gasoline. We try to virify combustion and emission characteristics in each engine parameters. Parameters of experimentation are equivalence ratio, spark timing and intake flow change. The results of this study are as swirl flows. In the case of adding swirl flow, burning speed and torque are increased. But NOx and THC concentration are increased a little respectively.

A Study on Characteristics of Direct Contact LNG Evaporator (직접접촉식 액화천연가스 기화기의 특성에 관한 연구)

  • 한승탁;김종보
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.4
    • /
    • pp.903-911
    • /
    • 1994
  • This study addresses the phenomena of bubbling, icing, eruption, component varieties of the evaporated natural gas, and volumetric heat transfer coefficients obtained during the operation of a proposed LNG evaporator between LNG and water in direct contact. In the present investigation, the explosive and eruption phenomena within the water column were not observed during the entire operation of the heat exchanger. Compared with the natural gas produced by conventional LNG evaporator, the analysis of the gas produced by the direct contact LNG evaporator shows that nitrogen, methane, and ethane components were reduced by 0.002~0.007mol%(4~14%), 1.6~1.92mol%(1.9~2.3%) and 0.17~1.28mol%(1.1~8.4%) respectively, while the moisture content was rather increased by 0.51~0.76mol%. The maximum volumetric heat transfer coefficient of the direct contact heat exchanger was found to be $21, 800kW/m^3\cdotK$.

Trend of the Unconventional Energy Resources (비재래 에너지자원 동향)

  • Cho, Jin Dong;Kim, Jong Hyun;Park, Kwan Soon
    • Economic and Environmental Geology
    • /
    • v.47 no.3
    • /
    • pp.265-273
    • /
    • 2014
  • Unconventional resources are natural resources which require greater than industry-standard levels of technology or investment to exploit the commercial development. The key point is that unconventional resources are lower quality fuel sources and are not as economically viable as crude oil and conventional gas. Over the past 100 years, Conventional oil and gas has been satisfied with the energy demands. But developing countries such as China and India, the introduction of the developed countries and the surge of energy due to the depletion of unconventional energy resources will be the limelight. According to be analyzed in the academic literature to unconventional gas and oil(2000~2012) by the program of 'web of science', the research activities 402 papers in unconventional gas and 1,581 papers in unconventional oil.

Finite Element Analysis on the Sealing Contact Stress of a CNG Fueling Nipple for Vehicles (자동차용 CNG 충전니플의 밀봉접촉응력에 관한 유한요소해석)

  • Kim, Chung Kyun;Yoo, Jae Wook
    • Journal of the Korean Institute of Gas
    • /
    • v.16 no.6
    • /
    • pp.67-72
    • /
    • 2012
  • In this study, the leak-free performance and sealing endurance safety of CNG fueling nipple in which are related to the contact normal stress and equivalent true stress have been analyzed for CNG automobile using a finite element analysis. For the conventional circular o-rings and new double-lip o-rings with an initial compression rate of 15 percentages, the leak-free performance of double-lip o-rings with two contact sealing spots is 41% higher than that of the conventional circular o-rings with a contact sealing spot. The FEM computed results present that the leak-free endurance safety of double-lip o-rings with two contact sealing spots is 5% higher than that of the conventional circular o-rings for initial compression ratio of 15 percentages and a gas compression pressure of 8MPa. And, the maximum equivalent true stress of double-lip o-rings is 10.2% higher than that of the conventional circular o-rings for the leak-free endurance safety. This means that the double-lip o-ring may guarantee the extended sealing life compared to that of a conventional circular o-ring.