• 제목/요약/키워드: conventional forming

검색결과 555건 처리시간 0.031초

전자기력을 이용한 박판 성형공정의 해석적 연구 (Numerical Simulation of Thin Sheet Metal Forming Process using Electromagnetic Force)

  • 서영호;허성찬;구태완;송우진;강범수;김정
    • 소성∙가공
    • /
    • 제17권1호
    • /
    • pp.35-45
    • /
    • 2008
  • Electromagnetic Forming (EMF) technology such as magnetic pulse forming, which is one of the high velocity forming methods, has been used for the joining and forming process in various industry fields. This method could be derived a series of deformation of sheet metal by using a strong magnetic field. In this study, numerical approach by finite element simulation of the electromagnetic forming process was presented. A transient electromagnetic finite element code was used to obtain the numerical model of the time-varying currents that are discharged through the coil in order to obtain the transient magnetic forces. Also, the body forces generated in electromagnetic field were used as the loading condition to analyze deformation of thin sheet metal workpiece using explicit dynamic finite element code. In this study, after finite element analysis for thin sheet metal forming process with free surface configuration was performed, analytical approach for a dimpled shape by using EMF was carried out. Furthermore, the simulated results of the dimpled shape by EMF were compared with that by a conventional solid tool in view of the deformed shape. From the results of finite element analysis, it is confirmed that the EMF process could be applied to thin sheet metal forming.

강판재의 보통 스피닝에 대한 성형성 연구 (Experimental Study on the Conventional Spinnability of Steel Sheets)

  • 이항수
    • 소성∙가공
    • /
    • 제14권9호통권81호
    • /
    • pp.764-771
    • /
    • 2005
  • This study is related with the development of CNC spinning machine and the axisymmetric conventional spinning such as drum type and conical type steel shells. The CNC spinning machine is constructed with heavy duty frame and the hydraulic servo system is applied in order to give the exactness of motion control. The experiment has been carried out considering feeding velocity, mandrel shape, and the corner radius of mandrel and forming rollers. As a result of experiment, the limiting spinning ratio and thickness strain distribution are obtained and it can be seen that the spinnability is dominant to the feeding velocity and corner radius of forming roller. This research can contribute to the development of axisymmetric mechanical part which is applicable to automotive and aerospace industry.

목재(木材)파티클과 철강결체(鐵鋼結締)가 보오드의 물리적(物理的) 성질(性質)에 미치는 영향(影響) (Effect of Combining Wood Particles and Wire Net on the Physical Properties of Board)

  • 이필우
    • Journal of the Korean Wood Science and Technology
    • /
    • 제13권3호
    • /
    • pp.3-26
    • /
    • 1985
  • The object of this study was to investigate the effects on physical and mechanical properties of wood particle and sawdust board combined with wire net. Conventional forming, press-lam, and veneer comply boards combining one to four wire net sheets were made from wood particle and sawdust with different spacings (8, 10, 12, and 18 Mok) and different wire diameters (0.35, 0.50, and 0.80mm) composing wire net. They were compared and analyzed statistically with specific gravity, thickness swelling, length swelling, bending properties (modulus of rupture, modulus of elasticity, work to proportional limit, and total work), internal bonding strength, and screw holding strength between wood particle and sawdust boards. The results obtained at this study as cording to the discussions might be concluded as follows; 1. In specific gravity, both particle and sawdust boards by press-lam method were higher than by conventional forming and veneer comply method, and the boards containing more wire net sheets also showed higher value. But the wire net spacings(Mok) had no influence on specific gravity. In general, particle board showed higher specific gravity than sawdust board. Veneer comply board showed lowest specific gravity values. 2. Both particle and sawdust boards by press-lam method was slightly lower than by conventional forming and veneer comply method in thickness swelling. The sawdust board containing 8, 12. and 18 Mok wire net showed lower thickness swelling than the corresponding particle board, but both sawdust and particle boards containing the T8 and 10 Mok wire net showed higher and similar thickness swelling. 3. Both particle and sawdust boards containing wire net showed no difference in MOR and MOE of bending. Comply board was the highest and particle board showed slightly higher than sawdust board in MOR and MOE values. 4. In work to proportional limit and total work in bending, both particle and sawdust boards containing thicker wire diameter and more wire net sheets showed higher value. From these facts, it is conceivable that boards with thicker wire diameter and more wire net sheets show increasing resistance against external force. But there was no significant difference between particle and sawdust borads. 5. In resistance against delamination (internal bonding strength), both sawdust and particle boards containing wire net showed lower value than control, and also showed decreasing tendency with more number of wire net sheet composed. Particle board showed higher resistance against delamination than sawdust board. 6. In screw holding strength, sawdust board containing thicker wire diameter and more wire net sheets showed higher value, but particle board by press-lam method was higher than by conventional forming and veneer comply method. Screw holding strength of particle board was higher than that of sawdust board.

  • PDF

점진성형에서 형상 정밀도에 영향을 미치는 공정 변수 (Effective Process Parameters on Shape Dimensional Accuracy in Incremental Sheet Metal Forming)

  • 강재관;정종윤
    • 산업경영시스템학회지
    • /
    • 제38권4호
    • /
    • pp.177-183
    • /
    • 2015
  • Incremental sheet metal forming is a manufacturing process to produce thin parts using sheet metals by a series of small incremental deformation. The process rarely needs dedicated dies and molds, thus, preparation time for the process is relatively short as to be compared to conventional metal forming. Spring back in sheet metal working is very common, which causes critical errors in dimensions. Incremental sheet metal forming is not fully investigated yet. Hence, incremental sheet metal forming frequently produces inaccurate parts. This paper proposes a method to minimize dimensional errors to improve shape accuracy of products manufactured by incremental forming. This study conducts experiments using an exclusive incremental forming machine and the material for these experiments are sheets of aluminum AL1015. This research defines a process parameter and selects a few factors for the experiments. The parameters employed in this paper are tool feed rate, tool diameter, step depth, material thickness, forming method, dies applied, and tool path method. In addition, their levels for each factor are determined. The plan of the experiments is designed using orthogonal array $L_8$ ($2^7$) which requires minimum number of experiments. Based on the measurements, dimensional errors are collected both on the tool contacted surfaces and on the non-contacted surfaces. The distances between the formed surfaces and the CAD models are scanned and recorded using a commercial software product. These collected data are statistically analyzed and ANOVAs (analysis of variances) are drawn up. From the ANOVAs, this paper concludes that the process parameters of tool diameter, forming depth, and forming method are the significant factors to reduce the errors on the tool contacted surface. On the other hand, the experimental factors of forming method and dies applied are the significant factors on the non-contacted surface. However, the negative forming method always produces better accuracy than the positive forming method.

음각 점진성형에서 치수정밀도에 영향을 미치는 형상 파라미터 분석 (Analysis of Shaping Parameters Influencing on Dimensional Accuracy in Single Point Incremental Sheet Metal Forming)

  • 강재관;강한수;정종윤
    • 산업경영시스템학회지
    • /
    • 제39권4호
    • /
    • pp.90-96
    • /
    • 2016
  • Incremental sheet forming (ISF) is a highly versatile and flexible process for rapid manufacturing of complex sheet metal parts. Compared to conventional sheet forming processes, ISF is of a clear advantage in manufacturing small batch or customized parts. ISF needs die-less machine alone, while conventional sheet forming requires highly expensive facilities like dies, molds, and presses. This equipment takes long time to get preparation for manufacturing. However, ISF does not need the full facilities nor much cost and time. Because of the facts, ISF is continuously being used for small batch or prototyping manufacturing in current industries. However, spring-back induced in the process of incremental forming becomes a critical drawback on precision manufacturing. Since sheet metal, being a raw material for ISF, has property to resilience, spring-back would come in the case. It is the research objective to investigate how geometrical shaping parameters make effect on shape dimensional errors. In order to analyze the spring-back occurred in the process, this study experimented on Al 1015 material in the ISF. The statistical tool employed experimental design with factors. The table of orthogonal arrays of $L_8(2^7)$ are used to design the experiments and ANOVA method are employed to statistically analyze the collected data. The results of the analysis from this study shows that the type of shape and the slope of bottom are the significant, whereas the shape size, the shape height, and the side angle are not significant factors on dimensional errors. More error incurred on the pyramid than on the circular type in the experiments. The sloped bottom showed higher errors than the flat one.

가변금형을 이용한 스트레치 성형장치 개발 (Development of Stretch Forming Apparatus using Flexible Die)

  • 서영호;허성찬;박중원;구태완;송우진;김정;강범수
    • 소성∙가공
    • /
    • 제19권1호
    • /
    • pp.17-24
    • /
    • 2010
  • A stretch forming method has been widely used in sheet metal forming process. Especially, this process has been adopted in aircraft and high-speed train industries for skin structure forming having a variety of curvature. Until now, solid dies, which are designed with respect to the specific shapes and manufactured as a single piece, have been usually applied to stretch forming process. Therefore, a great number of solid dies has to be developed according to the shapes of the curved skin structure. Accordingly, a flexible die is proposed in this study. It replaces the conventional solid dies with a set of height adjustable punch array. A usefulness of the flexible die is verified through a formability comparison with the solid die using finite element method considering an elastic recovery and the stretch forming apparatus with the flexible die is developed.

가변성형기술을 활용한 항공기 윙렛용 몰드 제작에 관한 수치적 연구 (Numerical Study of Aircraft Winglet Mold Manufacturing using Flexible Forming)

  • 박지우;구태완;김정;강범수
    • 소성∙가공
    • /
    • 제23권8호
    • /
    • pp.482-488
    • /
    • 2014
  • Flexible forming technology has advantages in sheet metal forming, because it can be implemented to produce various shaped molds using a single apparatus. Due to this advantage, it is possible to apply it to the manufacture of an aircraft winglet mold. Presently, most aircraft winglets are manufactured from composite materials. Therefore, the mold for the curing process is an essential element in the fabrication of such composite materials. Compared to conventional mold forming, flexible forming has some advantages such as reduced manufacturing cost and uniformity of mold thickness. If the thickness of the mold is consistent, then the heat transfer will occur uniformly during the curing process leading to improved formability of the composite material. In the current study, numerical simulations were performed to investigate the possibility of flexible forming for manufacturing of the winglet mold. In order to match the size of the actual product, the shape of objective surface was divided to fit the dimensions of the apparatus. The results from the numerical simulations are compared with the objective surface to verify the accuracy. In conclusion, the current study confirms the feasibility and the potential to manufacture winglet molds by flexible forming.

인자 분석을 통한 전기차 열교환기 분리판용 고강도 알루미늄 판재 성형 연구 (A Study on the Forming Process of High-strength Aluminum Sheet for Electric Vehicle Heat Exchanger Separator Through Parametric Analysis)

  • 정선호;양종훈;김용배;이광진;김봉환;이종섭;배기현
    • 소성∙가공
    • /
    • 제31권2호
    • /
    • pp.57-63
    • /
    • 2022
  • The current study performed formability analysis of a heat exchanger separator for an electric vehicle to apply a high-strength aluminum sheet based on parametric analysis. Mechanical properties for sheet metal forming simulation were evaluated by tensile test, bulge test, and Nakajima test. Two-stage crash forming was established by considering the mass production process using conventional low-strength aluminum sheets. In this study, FEM for the two-stage forming process was conducted to optimize the corner radius and height for improving the formability. In addition, the possibility of a one-stage forming process application was confirmed through FEM. The prototype of the sample was manufactured as FEM results to validate the parametric analysis. Finally, this result can provide a one-stage forming process design method using the high-strength aluminum sheet for weight reduction of a heat exchanger separator for an electric vehicle.

차량충돌해석 적용을 위한 간단화한 성형이력 고려 방법 (A Simplified Method to Consider Forming Effects in a Car Crash Analysis)

  • 허지향;윤종헌;임지호;박성호;허훈
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2008년도 추계학술대회 논문집
    • /
    • pp.259-262
    • /
    • 2008
  • This paper introduces a simplified method to consider forming effects in a car crash analysis. Representative value was used to consider forming effects simply. Four representative values, which are the mean value of thicknesses and effective plastic strains at nodes, the median of thicknesses and effective plastic strains at nodes, were evaluated. A crash analysis of a front side member shows that analysis results from the suggested methods are similar to those from the conventional method to consider forming effects. Use of the mean effective plastic strain shows the best results. A car crash analysis for a ULSAB/AVC model under the condition of US SINCAP were carried out to demonstrate the validity of the suggested method. Analysis results show that the error of suggested method is less than 1.5%.

  • PDF

박판페어를 이용한 하이드로포밍 공정의 수치적 및 실험적 해석 (Numerical and Experimental Analysis of Hydroforming Process of Sheet Metal Pairs)

  • 김태정;양동열;한수식;남재복;진영술
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2001년도 추계학술대회 논문집
    • /
    • pp.50-53
    • /
    • 2001
  • Hydroforming process has become an effective manufacturing process because it can be adaptable to forming of complex structural components. Tube hydroforming has been successfully developed in the real industrial field by many researchers. However, there still remains the constraint about shape which can be manufactured by tube hydroforming. In order to improve this constraint of shape and formability of conventional sheet metal forming, hydroforming process of sheet metal pairs becomes an important technology. In the present work, the finite element analysis of hydroforming process of sheet metal pairs is presented. After basic study about experimental parameters based on numerical analysis, hydroforming process of sheet metal pairs is developed which uses hydraulic pressure as a main forming source.

  • PDF