• 제목/요약/키워드: conventional finite element method

검색결과 812건 처리시간 0.022초

Finite element evaluation of the strength behaviour of high-strength steel column web in transverse compression

  • Coelho, Ana M. Girao;Bijlaard, Frans S.K.
    • Steel and Composite Structures
    • /
    • 제10권5호
    • /
    • pp.385-414
    • /
    • 2010
  • In current European Standard EN 1993, the moment-rotation characteristics of beam-to-column joints made from steel with a yield stress > 460MPa are obtained from elastic design procedures. The strength of the joint basic components, such as the column web subject to local transverse compression, is thus limited to the yield resistance rather than the plastic resistance. With the recent developments of higher strength steel grades, the need for these restrictions should be revisited. However, as the strength of the steel is increased, the buckling characteristics become more significant and thus instability phenomena may govern the design. This paper summarizes a comprehensive set of finite element parametric studies pertaining to the strength behaviour of high-strength steel unstiffened I-columns in transverse compression. The paper outlines the implementation and validation of a three-dimensional finite element model and presents the relevant numerical test results. The finite element predictions are evaluated against the strength values anticipated by the EN 1993 for conventional steel columns and recommendations are made for revising the specifications.

회전자 철심의 와전류를 고려한 BLDC 전동기의 유한 요소 해석 (Finite Element Analysis of a BLDC Motor Considering the Eddy Current in Rotor Steel Shell)

  • 박승찬;윤태호;권병일;윤희수;원성홍
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제48권3호
    • /
    • pp.110-116
    • /
    • 1999
  • This paper describes the effect of eddy currents in the rotor steel shell of exterior-rotor permanent magnet BLDC motor of which rotor is revolving at a high speed. A two-dimensional time-stepping finite element method is used for analyzing electromagnetic field and computing performances of the motor. As a result the effect of the eddy currents in the rotor steel shell is shown by comparing the analysis results from both the proposed method and the conventional one.

  • PDF

유한 요소법을 이용한 대변위 압전 Bimorph 설계 (Design of Large Displacement Piezoelectric Bimorphs with Finite Element Method)

  • 임종인;노용래;김선욱
    • 한국세라믹학회지
    • /
    • 제34권4호
    • /
    • pp.337-342
    • /
    • 1997
  • This paper describes the design and evaluation of new type piezoelectric bimorph actuator that shows much large mechanical response than those conventional types. The bimorph actuator has modified structure combined with the multilayer actuator(MLA) and the composite multilayer actuator called "Moonie". The design and performancean alysis of bimorph actuator are carried out with Finite Element Method (FEM). Theoretical calculation results show that the generating force and displacement of Moonie-modified bimorph actuator can be improved by about 130% and 150%, respectively. The overshooting and ringing phenomena of the bimorph can be effectively restrained by the pseudo step electric field having a rising time coincied with a period of the fundamental vibration mode of the bimorph.e bimorph.

  • PDF

유한요소법을 이용한 제트엔진 디스크의 초소성 단조공정설계 (Process Design in Superplastic Forging of a Jet Engine Disk by the Finite Element Method)

  • 이진희;강범수;김왕도
    • 대한기계학회논문집
    • /
    • 제18권4호
    • /
    • pp.876-886
    • /
    • 1994
  • Process design in superplastic forming to produce a Nickel-base jet engine disk has been carried out using the rigid-viscoplastic finite element method. This study aims at deriving systematic procedures in forging of superalloy engine disk, and develops a simple scheme to control strainrate within a range of superplastic deformation during the forging operation. The new process, a pancake type preform being used, is designed to have less manufacturing time, and more even distribution of effective strain in the final product, while the conventional superplastic forging of an engine disk has been produced from a cylindrical billet. The jet engine company, Pratt & Whitney, provided the basic information on the manufacturing process of superplastic forging of a jet engine disk.

방진고무 변형형상 및 하중-변위곡선 예측을 위한 단순 유한요소법 (A Simple Finite Element Method to Determination of Deformed Shape and Load-Displacement Curve of Elastomers)

  • 전만수;문호근;김성진
    • 대한기계학회논문집A
    • /
    • 제21권2호
    • /
    • pp.217-222
    • /
    • 1997
  • A simple finite element approach to predicting deformed shape and load-deflection curve of elastomers is presented in this paper. The method is based on several simplifications in deformation pattern and material behavior. The conventional updated Lagrangian approach is employed together with material data obtained by a simple tension test. The presented approach is verified through comparison of predicted results with experimental ones and applied successfully to shape design of various elastomers for shock, vibration and noise control. The advantage of the presented approach lies in easiness, simplicity and accuracy enough for engineering application.

Nonlinear finite element model updating with a decentralized approach

  • Ni, P.H.;Ye, X.W.
    • Smart Structures and Systems
    • /
    • 제24권6호
    • /
    • pp.683-692
    • /
    • 2019
  • Traditional damage detection methods for nonlinear structures are often based on simplified models, such as the mass-spring-damper and shear-building models, which are insufficient for predicting the vibration responses of a real structure. Conventional global nonlinear finite element model updating methods are computationally intensive and time consuming. Thus, they cannot be applied to practical structures. A decentralized approach for identifying the nonlinear material parameters is proposed in this study. With this technique, a structure is divided into several small zones on the basis of its structural configuration. The unknown material parameters and measured vibration responses are then divided into several subsets accordingly. The structural parameters of each subset are then updated using the vibration responses of the subset with the Newton-successive-over-relaxation (SOR) method. A reinforced concrete and steel frame structure subjected to earthquake loading is used to verify the effectiveness and accuracy of the proposed method. The parameters in the material constitutive model, such as compressive strength, initial tangent stiffness and yielding stress, are identified accurately and efficiently compared with the global nonlinear model updating approach.

An edge-based smoothed finite element method for adaptive analysis

  • Chen, L.;Zhang, J.;Zeng, K.Y.;Jiao, P.G.
    • Structural Engineering and Mechanics
    • /
    • 제39권6호
    • /
    • pp.767-793
    • /
    • 2011
  • An efficient edge-based smoothed finite element method (ES-FEM) has been recently developed for solving solid mechanics problems. The ES-FEM uses triangular elements that can be generated easily for complicated domains. In this paper, the complexity study of the ES-FEM based on triangular elements is conducted in detail, which confirms the ES-FEM produces higher computational efficiency compared to the FEM. Therefore, the ES-FEM offers an excellent platform for adaptive analysis, and this paper presents an efficient adaptive procedure based on the ES-FEM. A smoothing domain based energy (SDE) error estimate is first devised making use of the features of the ES-FEM. The present error estimate differs from the conventional approaches and evaluates error based on smoothing domains used in the ES-FEM. A local refinement technique based on the Delaunay algorithm is then implemented to achieve high efficiency in the mesh refinement. In this refinement technique, each node is assigned a scaling factor to control the local nodal density, and refinement of the neighborhood of a node is accomplished simply by adjusting its scaling factor. Intensive numerical studies, including an actual engineering problem of an automobile part, show that the proposed adaptive procedure is effective and efficient in producing solutions of desired accuracy.

강소성 유한요소해석의 안정화와 고능률화에 관한 연구 (Computational strategies for improving efficiency in rigid-plastic finite element analysis)

  • 추만석;김영석
    • 대한기계학회논문집
    • /
    • 제13권3호
    • /
    • pp.317-322
    • /
    • 1989
  • 본 연구에서는 Liu의 매트릭스를 강소성 유한요소법에 도입하여 통상의 소성가공 공정중에 있는 피가공물의 3차원 변형을 실용적인 수준에서 해석 가능케 하는 강소성 유한요소법을 도입하여 통상의 소성가공 공정중에 있는 피가공물의 3차원 변형을 실용적인 수준에서 해석 가능케 하는 강소성 유한요소법을 제안하고 실례를 통하여 제안한수법에 의하여 얻어진 해의 안정성과 계산효율을 검토한다.

유한요소해석을 이용한 곡면보 기반 진동체의 진동력 향상 방법 (Vibration Power Improvement Method of Curved Beam Based Actuator Using Finite Element Analysis)

  • 박재성;나승대;성기웅;김명남
    • 한국멀티미디어학회논문지
    • /
    • 제22권2호
    • /
    • pp.271-280
    • /
    • 2019
  • Recently, hearing loss patients have been increasing to excessive use of various multimedia devices. One of the hearing rehabilitation systems, bone conduction hearing aid can be used to conductive deafness patients efficiently. However, the conventional bone conduction hearing systems has some problems such as skin diseases, repulsion of patients, and vibration power reduction by skin damping. In this paper, to overcome the conventional problems, we proposed power improvement method by curved beam diaphragm. The proposed method is skin attachment system which is non-implantable, and then the power of transducer is improved by the proposed method. In order to improve the vibration power of diaphragm, variable that has correlation with displacement are extracted, the diaphragm designed by extracted variable. To verify efficient of the proposed method, experiment conducted by finite element analysis. As a result of, the proposed method confirmed improved power to compare with the conventional method and proposed method.

비접촉식 평면구동기의 동특성해석 (Dynamic Analysis of the Contact-free Surface Actuator)

  • 이상헌;백윤수
    • 한국소음진동공학회논문집
    • /
    • 제13권9호
    • /
    • pp.663-670
    • /
    • 2003
  • As the micro-technologies in the high precision manufacturing processes are developed, the demand for micro actuating device is increasing. But, it is difficult to achieve high resolution and wide operating range simultaneously with the conventional actuating systems which are contacting and type of dual servo system. So, the contact-free surface actuators whose movers are suspended or levitated were proposed. These systems can be applied to high precision stages and alignment apparatuses. The suspended mover can be assumed to be rigid body, but the mover is a structure in this study, therefore the vibration caused during the operating process has a serious adverse effect on the performance and it is very important to identify the vibrational characteristics. In this paper, a contact-free surface actuator is modeled in finite element method and updated by using the experimental modal data. Finally, the static and dynamic characteristics of the finite element model are predicted and then discussed.