• Title/Summary/Keyword: conventional extrusion

Search Result 147, Processing Time 0.024 seconds

A novel approach for manufacturing oxide dispersion strengthened (ODS) steel cladding tubes using cold spray technology

  • Maier, Benjamin;Lenling, Mia;Yeom, Hwasung;Johnson, Greg;Maloy, Stuart;Sridharan, Kumar
    • Nuclear Engineering and Technology
    • /
    • v.51 no.4
    • /
    • pp.1069-1074
    • /
    • 2019
  • A novel fabrication method of oxide dispersion strengthened (ODS) steel cladding tubes for advanced fast reactors has been investigated using the cold spray powder-based materials deposition process. Cold spraying has the potential advantage for rapidly fabricating ODS cladding tubes in comparison with the conventional multi-step extrusion process. A gas atomized spherical 14YWT (Fe-14%Cr, 3%W, 0.4%Ti, 0.2% Y, 0.01%O) powder was sprayed on a rotating cylindrical 6061-T6 aluminum mandrel using nitrogen as the propellant gas. The powder lacked the oxygen content needed to precipitate the nanoclusters in ODS steel, therefore this work was intended to serve as a proof-of-concept study to demonstrate that free-standing steel cladding tubes with prototypical ODS composition could be manufactured using the cold spray process. The spray process produced an approximately 1-mm thick, dense 14YWT deposit on the aluminum-alloy tube. After surface polishing of the 14YWT deposit to obtain desired cladding thickness and surface roughness, the aluminum-alloy mandrel was dissolved in an alkaline medium to leave behind a free-standing ODS tube. The as-fabricated cladding tube was annealed at $1000^{\circ}C$ for 1 h in an argon atmosphere to improve the overall mechanical properties of the cladding.

Effect of Gun Nozzle Movement Speed in HVOF Process on the properties of Coating Thickness and Surface (HVOF 용사 건의 이동속도가 WC-Co 코팅층의 두께 형성 및 표면 특성에 미치는 영향)

  • Kim, Kibeom;Kim, Kapbae;Jung, Jongmin;Kim, Kwonhoo
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.35 no.5
    • /
    • pp.262-269
    • /
    • 2022
  • In order to process materials such as engineering plastics, which are difficult to mold due to their high strength compared to conventional polymer materials, it is necessary to improve the hardness and strength of parts such as screws and barrels of injection equipment in extrusion system. High-velocity oxygen fuel (HVOF) process is well known for its contribution on enhancement of surface properties. Thus in this study, using the HVOF process, WC coating layers of different thicknesses were bonded to the surface of S30C substrate by controlling the movement speed of the spray nozzle and each property was evaluated to decide the optimization condition. Through the results, the thickness of WC coating layer increased from 0 to 200 ㎛ maximum, along with the decrement of nozzle movement speed and the surface hardness get increased. Especially, the coated layer with the thickness over 180 ㎛ under the nozzle speed 500 mm/s had high hardness than thinner layer. In addition, the amount of wear consumed per unit time was also significantly reduced due to the formation of the coating layer.

Outcomes of the GentleWave system on root canal treatment: a narrative review

  • Hernan Coaguila-Llerena;Eduarda Gaeta;Gisele Faria
    • Restorative Dentistry and Endodontics
    • /
    • v.47 no.1
    • /
    • pp.11.1-11.11
    • /
    • 2022
  • This study aimed to describe the outcomes of the GentleWave system (GW) (Sonendo) on root canal treatment. Published articles were collected from scientific databases (MEDLINE/PubMed platform, Web of Science, Scopus, Science Direct and Embase). A total of 24 studies were collected from August/2014 to July/2021, 20 in vitro and 4 clinical. GW System was not associated with extrusion of the irrigant, promoted faster organic dissolution than conventional syringe irrigation (CSI), passive ultrasonic irrigation (PUI) continuous ultrasonic irrigation (CUI) and EndoVac, reduced more bacterial DNA and biofilm than PUI and CUI, promoted higher penetration of sodium hypochlorite into dentinal tubules than PUI and CUI in vitro, and removed more intracanal medication than CSI and PUI. GW was able to remove pulp tissue and calcifications. Moreover, its ability to remove hard-tissue debris and smear layer was better than that of CSI, and its ability to remove root canal obturation residues was lower or similar to that of PUI, and similar to that of CSI and EndoVac. Regarding root canal obturation of minimally instrumented molar canals, GW was associated with high-quality obturation. Clinically, the success rate of endodontic treatment using GW was 97.3%, and the short-term postoperative pain in the GW group was not different from CSI. Further research, mainly clinical, is needed to establish whether GW has any advantages over other available irrigation methods.

Fabrication and Evaluation of High Mg-content ECO-Almag6~9 Extruded Products by using Oxidation-resistant Mg Mother Alloy (내산화성 Mg 모합금을 이용한 고(高) Mg 함유 ECO-Almag6~9 합금 압출재의 제조 및 특성평가)

  • Kim, Bong-Hwan;Yoon, Young-Ok;Kim, Shae-Kwang
    • Journal of Korea Foundry Society
    • /
    • v.41 no.3
    • /
    • pp.252-259
    • /
    • 2021
  • The magnesium is one of the important alloying elements in the conventional aluminum alloys. The addition of magnesium to aluminum is well known to increase the mechanical strength of the aluminum without the trade-off of the decreased elongation. However, the content of magnesium in aluminum alloys has been limited to be lower than about 5wt.% because of the high oxidation tendency of magnesium element during the manufacturing processes such as casting, hot-forming and post heat-treatments, which can deteriorate the quality and properties of the final products. In this study, new 'ECO-Almag6~9' (containing 6~9wt%Mg) alloys were investigated to be made of the ECO-Mg master alloy, which has been invented to reduce the oxidation tendency of itself. It was successfully demonstrated that ECO-Almag6~9 alloys can be fabricated through the mass-production facilities of DC casting and extrusion routes without the problems of magnesium oxidation. In addition, it was confirmed that the strength and ductility were simultaneously improved due to the addition of high magnesium contents.

Strength Characteristics of 3D Printed Concrete According to the Stacking Direction (적층 방향에 따른 3D 프린팅 콘크리트의 강도 특성)

  • Won, Hee-Jae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.2
    • /
    • pp.632-637
    • /
    • 2021
  • In order to develop future construction technology, research is actively being conducted on concrete construction technology using 3D printing, which is currently in the spotlight as a future industry in domestic and foreign construction industries and academia. However, 3D printing technology is currently being developed and does not meet the requirements for proper construction technology and the properties of concrete materials, and it is difficult to apply in the actual field. Research is also needed for the durability management and maintenance of constructed structures. This work compares the compressive and flexural strength to that produced in conventional molds by dividing the 3D printed concrete output by the laminated X, Y, and Z axes. The compressive strength of a test specimen in the II Z-axis test direction was 8-10% higher than that of the other test directions (I and III Y axes and X axis). The strength was 4% lower than that of a molded test specimen. As of 28th of the age, the bending strength of the test specimen in the Z-axis direction was 5 to 7% higher than that of the I and III Y, and X-axis test directions, and the strength was 2% lower than that of the molded test specimen.

Properties of Smart Vapor Self-Releasing Composite Films to Microwave Packaging (증기 자가방출 스마트 전자레인지 포장재 적용을 위한 복합필름 특성연구)

  • Wooseok, Song;Hojun, Shin;Jongchul, Seo
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.28 no.3
    • /
    • pp.157-163
    • /
    • 2022
  • The demands for Home Meal Replacement (HMR) products are continuously increasing owing to the convenience of instant food and online food delivery. Ready-to-heat (RTH) products have received massive attention in the HMR industry because these products can be easily warmed using a microwave oven. However, the conventional microwave packaging should be opened before microwave heating to prevent bursting or food loss owing to the steam-pressure build-up inside the package. Open packaging might lead to non-uniform food heating and cross-contamination. Therefore, packaging materials that are able to release steam without opening are of interest to the HMR industry. In this study, polylactic acid(PLA)/polyethylene glycol(PEG)/nanoclay composite films were manufactured using an extrusion method as packaging materials with a smart steam-releasing function. The introduction of PEG to the PLA imparted a steam self-releasing feature to the composite films owing to the morphology change of composite films during microwave heating. Further, PEG increased the ductility of PLA, which in turn prevented bursting caused due to the steam-pressure build-up. The uniform dispersion of nanoclay obtained by a twin-screw extrusion led to stronger mechanical properties. Therefore, the smart composite films developed here can be applied as microwave packaging materials with a self-releasing function.

A Study on the Design Methods Utilizing 'Congestion' and 'Void' from Rem Koolhaas's Architecture (렘 콜하스의 건축에서 나타나는 밀집과 보이드를 적용한 디자인 방법에 관한 연구)

  • Park, Sola
    • Korean Institute of Interior Design Journal
    • /
    • v.23 no.6
    • /
    • pp.51-59
    • /
    • 2014
  • Rem Koolhaas has pursued new architectural approaches breaking with conventional ones. Around the 1990s when large-scale projects occurred with the union of Europe ahead, Koolhaas recognized the limits to the existing methods for responding to such changes. Accordingly, he came to use design methods based on 'congestion' and 'void' as strategical alternatives, which became the moment for him to leap forward from the previous working sphere based in Europe to becoming an architect who would be commissioned a number of large-scale global projects. Therefore, this study intends to investigate his design methods which utilized congestion and void, and to derive spatial characteristics from the projects based on such methods. First of all, the study looked into the historical background, definition and process of congestion and the void as design methods, and analyzed his projects to which such methods were applied by classifying them into the following categories: 1) the void that removes a space of singularity; 2) the void that penetrates space while making a flow; and 3) the void that is formed by vertical extrusion. Then, the characteristics of architectural spaces made in this way were identified as 1)the single-body appearance made by congestion and the following types of space made by the void: 2) the non-uniformly shaped space that looks like floating; 3) the flexible space with various flows and directions; and 4) the space with virtual possibilities that embrace contingent events. This understanding of Rem Koolhaas's design methods which were attempted in various ways at his critical turning point will be the foundation to understand the overall world of his works.

Clinical Characteristics of Cervical and Thoracic Radiculopathies: Non-Invasive Interventional Therapy (목 및 가슴신경뿌리병증의 임상적 고찰: 비침습적 중재시술치료)

  • Roh, Hakjae;Lee, Sang-Heon;Kim, Byung-Jo
    • Annals of Clinical Neurophysiology
    • /
    • v.10 no.2
    • /
    • pp.83-97
    • /
    • 2008
  • Cervical and thoracic radiculopathies are among the most common causes of neck pain. The most common causes are cervical disc herniation and cervical spondylosis in patients with cervical radiculopathy, and diabetes mellitus and thoracic disc herniation in thoracic radiculopathy. A thorough history, physical examination, and testing that includes electrodiagnostic examination and imaging studies may distinguish radiculopathy from other pain sources. Although various electrodiagnostic examinations may help evaluate radiculopathy, needle electromyography is the most important, sensitive, and specific method. Outcome studies of conservative treatments have shown varying results and have not been well controlled or systematic. When legitimate incapacitating symptoms continue despite conservative treatment attempts, more invasive spinal procedures and intradiscal treatment may be appropriate. Surgery has been shown to have excellent clinical outcomes in patients with disc extrusion and neurological deficits. However, patients with minimal disc herniation have fair or poor surgical outcomes. In addition, conventional open disc surgery entails various inadvertent surgical related risks. Although there has not yet been a non-surgical interventional procedure developed with the therapeutic efficacy of open surgery, conservative procedures can offer substantial benefits, are less invasive, and avoid surgical complications. While more invasive procedures may be appropriate when conservative treatment fails, prospective studies evaluating cervical and thoracic radiculopathies treatment options would help guide practitioners toward optimally cost-effective patient evaluation and care.

  • PDF

Preparation and Characterization of Uranium Silicide Dispersion Nuclear Fuel by Centrifugal Atomization (원심분무에 의한 Uranlum filicide 분산핵연료의 제조와 특성)

  • 김창규
    • Journal of Powder Materials
    • /
    • v.1 no.1
    • /
    • pp.72-78
    • /
    • 1994
  • Two kinds of $U_3Si$ powders and $U_3Si$ dispersed nuclear fuel meats have been prepared by conventional comminution process and a newly developed rotating disk atomization process. In contrast to angular shape and broad size distribution of the conventionally processed powder, the atomized powder was spherical and showed narrow size distribution. For the atomized powder, the heat treatment time for the formation of $U_3Si$ by a peritectoid reaction was reduced to about one tenth, thanks to microstructure refinement by rapid cooling of about 5$\times$104 K/s. The extruding pressure of atomized $U_3Si$ powder and Al powder mixture was lower than that of comminuted $U_3Si$ and Al powder mixture. The elongation of the atomization processed fuel meats was much higher than that of the comminution processed fuel meats and remained over 10% up to 80wt.% of $U_3Si$ powder fraction in the fuel meats. It appears therefore that the loading density of $U_3Si$ in fuel meat can be increased by using atomized $U_3Si$ powder. The atomized spherical particles were randomly distributed, while the comminuted particles with angular and longish shape were considerably aligned along the extrusion direction. Along the transverse direction of the extraction the electrical conductivity of the atomization processed fuel meats was appreciably higher than that of comminution processed fuel meats. This tendency became pronounced as $U_3Si$ content increased. Because the thermal conduction which is believed to be proportioned to the electrical conduction in the nuclear fuel meats occurs in radial direction, the atomization processed fuel can be better used in research reactors where high thermal conductivity is required.

  • PDF

Fabrication of Natural Fiber Composites through Hot Press and Analysis of Interfacial Adhesion (고온 프레스를 이용한 자연섬유 복합재료 제조와 계면 결합 분석)

  • Yi, Jin W.;Hwang, Byung S.;Lee, Jung H.;Nah, Chang W.
    • Journal of Adhesion and Interface
    • /
    • v.7 no.2
    • /
    • pp.26-31
    • /
    • 2006
  • In order to effectively improve interfacial adhesion strength between polypropylene (PP) and jute fiber, we particularly incorporated maleic anhydride grafted PP (MAPP) into the matrix through the environment-friendly process without an additional method of process and had better mechanical performances by providing the alignment into the natural fiber than those of the conventional fabrication technology such as an extrusion or injection molding. We also proposed hot pressing method which applied relatively low shear to the composites and confirmed the chemical bonds among the functional groups of MAPP and jute using FT-IR approach. The concentration of MAPP for maximum tensile strength and modulus was optimized at 3 wt%. Flexural properties had no noticeable tendency to increase with MAPP contents compared to tensile strength, which could probably be explained by the degree in wetting of PP/MAPP matrix.

  • PDF