• Title/Summary/Keyword: conventional compaction

Search Result 108, Processing Time 0.024 seconds

Application of the New Degree of Compaction Evaluation Method (새로운 다짐도 평가기법의 적용성에 관한 연구)

  • Park, Keun-Bo;Kim, Ju-Hyong
    • Journal of the Korean Geotechnical Society
    • /
    • v.28 no.2
    • /
    • pp.5-14
    • /
    • 2012
  • CMV(Compaction Meter Value) obtained from compaction results using an accelerometer, which measures the impact on the ground and the resilient force of the ground, is compared with the other degree of compaction through regression analysis. As a result, there is no correlation between results from conventional test methods (e.g., the plate load test and field density test) and the degree of compaction evaluated by either the Geogauge or the dyanamic cone penetrometer. To assess the possibility of replacing the conventional test methods with new test methods using CMV, several degrees of compaction tests were carried out. Those results show that the CMV obtained from compaction results using an accelerometer can be used as a substitute for conventional methods to evaluate the stiffness characteristics of compacted soil.

The Comparison of the Characteristics of Displacement Isolines in the Cylindrical Green Compact under Ultrasonic Vibration

  • Prakorb, Chartpuk;Anan, Tempiam;Somchai, Luangsod;Vorawit, Voranawin
    • International journal of advanced smart convergence
    • /
    • v.4 no.1
    • /
    • pp.120-126
    • /
    • 2015
  • This research is a comparison of the characteristics of the displacement isolines due to powder-die-wall friction that arise during the compaction of ceramic powders in conventional die. It has been done using the CosmosWorks software package of the SolidWorks simulation software. The results of comparative simulation with FEM showed that the comparison of the displacement isolines and distribution of deformation of the ceramic powders. In the case of conventional uniaxial dry compaction for long length cylindrical green compact, considerable bending of the layers in the form of a cone can be observed. It is symmetry along centerline of cylindrical green compact. The distributions of the deformation of the green compacts (diameter 14 mm, height 20 mm) as a result of conventional compaction under ultrasonic vibration with power 1 and 2 kW are reduced to 4% and 6.5% when compared with conventional compaction without ultrasonic vibration respectively. Thus, density distribution can be minimized by increasing the power of ultrasonic vibration.

A Study on Densification Behvior of Austenitic Stainless Steel Powder Compacts Processed by Warm Compaction (온간 성형법으로 제작한 오스테나이트계 스테인레스강의 소결 거동에 관한 연구)

  • 임태환
    • Journal of Powder Materials
    • /
    • v.7 no.1
    • /
    • pp.42-49
    • /
    • 2000
  • Densificationbehavior of conventional austenitic stainless steel powder compacts was studied by comparing the relative density of sintered compact(Ds)with that of green compacts(Dg)prepared with various catbon contents and P/M process. Dg of 304and 316 powders by warm compaction under pressure of 686 MPa at heating temperature of powder(553K) and dies (573K) were 80% and 81%, repectively, whichwere 2 and 3% higher than those of conventional green compacts at the same pressure. Ds of 304 compacts sintered at 1373K in H2 gas has the same value of 84% max. regardless of compacting temperature, and Ds of 316 compacts at the same sintering conditions were 80% by conventional compaction and 83% by warm compaction. Oxygen contents of 304 and 316 sintered compacts were increased 1.43∼2.94% and 0.010∼0.921% higher than those of raw powders and warm green compacts, respectively. In other case, Ds of 316 compacts sintered at 1573K in vacuum had the same value of 86%max. And Ds of 316 compacts at the same sintering conditions were 83% and 86% by conventional and warm compaction, respectively. Oxygen contents of 304 sintered compacts were 0.321% and 0.360%, and in case of 316, they were 0.419% and 0.182% by the respective compating condition. With carbon additions in the range 0.1∼0.6% Ds increased to the extent of 86∼89% in 304 sintered compacts, and to 82∼84% and 85∼87% in 316 according to different two compacting peocesses compared to those of sintered compacts without carbon addition.

  • PDF

High Performance Iron Powder Mixes for High Density PM Applications

  • St-Laurent, Sylvain;Azzi, Lhoucine;Thomas, Yannig
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.740-741
    • /
    • 2006
  • The achievement of high density at reasonable cost is one of the major challenges of the P/M industry. One of the key factors contributing to the compressibility of a mix is the lubricant. New experimental lubricants enabling higher green density by conventional compaction or temperature-controlled die compaction were identified. The compaction and ejection characteristics of these new lubricants as measured with a fully instrumented lab press are presented and compared to that of conventional lubricants.

  • PDF

A Methodology for Compaction Control of Crushed-Rock-Soil-Fills (암버럭-토사 성토 노반의 다짐 관리 방안)

  • Park, Chul-Soo;Hong, Young-Pyo;Joh, Sung-Ho;Mok, Young-Jin
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.607-616
    • /
    • 2006
  • More strict construction control of railway roadbeds is demanded in high speed railway system because of heavier repeated dynamic loading than conventional railways. The aim of this study is to propose a compaction control methodology of crushed-rock-soil-fills including as large particles as $200\sim300mm$ in diameter, which are easily encountered in high speed railway roadbed. Field tensity evaluation and in turn compaction control of such crushed-rock-soil-fills are almost impossible by conventional methods such as in-situ density measurements or plate loading tests. The proposed method consists of shear wave measurements of compaction specimens in laboratory and in-situ measurements of fills. In other words, compaction control can be carried out by comparing laboratory and field shear wave velocities using as a compaction control parameter. The proposed method was implemented at a soil site in the beginning and will be expanded to crushed-rock-soil-fills in future. One interesting result is that similar relationship of shear wave velocity and water content was obtained as that of density and water content with the maximum value at the optimum moisture content.

  • PDF

Analysis of Relationship Between Compressive Strength and Compaction Ratio of Roller-Compacted Concrete Pavement (포장용 롤러전압콘크리트의 다짐도와 압축강도의 상관관계 분석)

  • Chung, Gun Woo;Song, Si Hoon;Lee, Seung Woo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.36 no.6
    • /
    • pp.1117-1123
    • /
    • 2016
  • Roller-Compacted Concrete Pavement (RCCP) is a type of pavement that shares conventional concrete pavement material characteristics and asphalt pavement construction characteristics. Even though RCCP is compacted in the same way and have similar aggregate gradation to asphalt pavements, its materials and structural performance properties are similar to those of conventional concrete pavement. With cement hydration and aggregate interlock, Roller-Compacted Concrete or RCC can provide strength properties equal to those of conventional concrete with low cement content. Therefore, compaction ratio of RCC can highly influence on its strength. In general, 95% of compaction ratio is required for proper strength development. RCC strength can be highly influenced by compaction energy which depends on compaction equipment and compaction method. Therefore, it is necessary to analyze the relationship between compressive strength and compaction ratio of RCC. RCCP specimens were produced at different compaction ratio by using different compaction methods and energies. The compaction ratio was defined by the ratio of the specimen's dry density and its maximum dry density. The maximum dry density was obtained from Modified Proctor test. 28 days compressive strength corresponding to each compaction ratio case was tested. Finally, the relationship between compressive strength and compaction ratio can be analyzed. For application of roller-compacted concrete in domestic construction site, the relationship is important for field compaction management.

Hot Pressing after Cold Cyclic Compaction of Alumina Powder Matrix Mixtures -Effects of Cold Cyclic Compaction- (알루미나 분말 기지혼합체의 상온 반복압축 후 가압소결 -상온 반복압축 효과-)

  • Son, G.S.;Suh, J.;Park, B.H.;Kim, K.T.
    • Journal of the Korean Ceramic Society
    • /
    • v.30 no.2
    • /
    • pp.157-163
    • /
    • 1993
  • Hot pressing after cold cyclic compaction of Al2O3 powder mixtures containing SiC whiskers or Al2O3 short fibers is studied with emphasis on the effects of cold cyclic compaction. The green density of the mixtures increases as the cycle number increases and the cyclic pressure becomes higher. The higher green density is also obtained by cold cyclic compaction with the lower pressrue than a single stroke cold compaction. To achieve a higher densification during hot pressing, cold cyclic compaction before hot pressing is more efficient compared to the conventional hot pressing process (without cold cyclic compaction). Moreover, a low cyclic pressure did not affect on toughening mechanism by whisker reinforcement.

  • PDF

A Global Compaction of Microprograms Using Triangular Matrices and Junctiuon Blocks (삼각행렬과 접합블럭을 이용한 마이크로프로그램의 광역적 최적화)

  • Choi, Ki Ho;Lim, In Chil
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.23 no.5
    • /
    • pp.681-691
    • /
    • 1986
  • To represent the relations of the data dependency and resource conflict among micro-operations(MOP's) in the compaction process of microprograms, we propose a DDM (data dependent matrix) representation method instead of the DAG (conventional directed acyclic graph). Also, we propose a global compaction algorithm of microprograms to prevent a kind of block copying by cutting the trace at a junction block. The DDM method and compaction algoristhm have been applied to the Lah's example. The results shows that the proposed algorithm is more efficient than the conventional algorithms in reducing in reducing the total execution time and control memory space.

  • PDF

Influence of Mold Temperature, Lubricant and its Additional Quantity on Compressibility in Warm Compaction

  • Ushirozako, Tsutomu;Yamamoto, Masayuki
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.195-196
    • /
    • 2006
  • In recent years, demands for sintered ferrous material with higher strength are increasing. To satisfy these demands, studies and commercial use of the die wall lubrication method, the warm compaction method and the combination of both methods are widely carried out to achieve high density. The die wall lubrication warm compaction method makes it possible to achieve high density by reducing internal lubricant through die wall lubrication, although the method involves several issues such as prolonged cycle time due to lubricant spraying and difficulty in spraying lubricant in the case of compacting with complicated geometry. Meanwhile, the conventional warm compaction method requiring no die wall lubricant application cannot achieve such a high density as in the case of die wall lubrication warm compaction due to higher volume of internal lubricant. However, this report discloses our study result in which the possibility of improving density is exhibited by using a lubricant type with superior dynamic ejection property that can reduce volume of lubricant additive.

  • PDF

Development of an Intelligent Compaction Evaluation Method Based on Statistics Analysis (통계해석에 기초한 연속다짐평가기법 개발)

  • Park, Keun-Bo;Kim, Ju-Hyong
    • Journal of the Korean Geotechnical Society
    • /
    • v.27 no.8
    • /
    • pp.5-16
    • /
    • 2011
  • The objective of this paper is to assess the potential use of the resilient force of the ground obtained from an accelerometer and to propose a new compaction control process. Several comprehensive field experimental programs were conducted to analyze the correlation of compaction results obtained from an accelerometer and conventional test methods (e.g. the plate load test and field density test). This study focused on comparing the compaction results obtained from an accelerometer with conventional test results statistically. Based on the statistical analysis results, impact and resilient force measured from an accelerometer, mounted on the drum of a roller are very useful factors for continuous compaction control. A new compaction criteria determination process using an accelerometer is also proposed in this study.