• Title/Summary/Keyword: conventional analysis

Search Result 9,949, Processing Time 0.053 seconds

A natural frequency sensitivity-based stabilization in spectral stochastic finite element method for frequency response analysis

  • Lee, Gil-Yong;Jin, Seung-Seop;Park, Yong-Hwa
    • Structural Engineering and Mechanics
    • /
    • v.75 no.3
    • /
    • pp.311-325
    • /
    • 2020
  • In applying the spectral stochastic finite element methods to the frequency response analysis, the conventional methods are known to give unstable and inaccurate results near the natural frequencies. To address this issue, a new sensitivity based stabilized formulation for stochastic frequency response analysis is proposed in this paper. The main difference over the conventional spectral methods is that the polynomials of random variables are applied to both numerator and denominator in approximating the harmonic response solution. In order to reflect the resonance behavior of the structure, the denominator polynomials is constructed by utilizing the natural frequency sensitivity and the random mode superposition. The numerator is approximated by applying a polynomial chaos expansion, and its coefficients are obtained through the Galerkin or the spectral projection method. Through various numerical studies, it is seen that the proposed method improves accuracy, especially in the vicinities of structural natural frequencies compared to conventional spectral methods.

Design and Analysis of Hybrid Stator Bearingless SRM

  • Lee, Dong-Hee;Ahn, Jin-Woo
    • Journal of Electrical Engineering and Technology
    • /
    • v.6 no.1
    • /
    • pp.94-103
    • /
    • 2011
  • This paper presents a novel bearingless switched reluctance motor (BLSRM) with decoupled torque and suspending stator poles. BLSRM is different from conventional bearingless switched reluctance motors (SRMs) because its suspending poles are separated from the torque poles. Perpendicularly placed suspending poles are designed to produce a continuous radial force to suspend the rotor. Due to the independent suspending and torque poles, BLSRM produces a suspending force with excellent linearity according to the rotor position and independent characteristics of the torque current. The air-gap is easier to control than in conventional SRMs with their linear and independent characteristics. Furthermore, to verify the proposed structure, a mathematical model for the suspending force is derived. Finite element analysis is also employed to compare BLSRM and conventional SRMs expressions of suspending force. A prototype motoris designed and manufactured to verify the effectiveness of the proposed bearingless structure.

A Coupled Finite Element Analysis of Independently Modeled Substructures by Penalty Frame Method

  • Maenghyo Cho;Kim, Won-Bae
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.10
    • /
    • pp.1201-1210
    • /
    • 2002
  • A penalty frame method is proposed for the coupled analysis of finite elements with independently modeled substructures. Although previously reported hybrid interface method by Aminpour et al (IJNME, Vol 38, 1995) is accurate and reliable, it requires non-conventional special solution algorithm such as multifrontal solver. In present study, an alternative method has been developed using penalty frame constraints, which results in positive symmetric global stiffness matrices. Thus the conventional skyline solver or band solver can be utilized in the solution routine, which makes the present method applicable in the environment of conventional finite element commercial software. Numerical examples show applicability of the present method.

Probabilistic finite Element Analysis of Plane Frame (평면 FRAME구조물의 확률 유한 요소 해석)

  • 양영순;김지호
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1989.10a
    • /
    • pp.40-45
    • /
    • 1989
  • In order to take account of the statistical properties of random variables used in the structural analysis, the conventional approach usually adopts the safety factor based on past experiences for the qualitative assessment of structural safety problem. Recently, new approach based on the probabilistic concept has been applied to the assessment of structural safety in order to circumvent the difficulties of the conventional approach in choosing the appropriate safety factor. Thus, computer program called "Probabilistic finite element method" is developed by incorporation the probabilistic concept into the conventional matrix method in order to investigate the effects of the random variables on the final output of the structural analysis. From the comparison of some examples, it can be concluded that the PFEM developed in this study deals with consistently with the uncertainty of random variables and provides the rational tool for the assessment of structural safety of plane frame.

  • PDF

A Study on the Development of Sub-frame Designe Using Tailor Welded Blanks (Tailor Welded Blanks를 이용한 승용차용 Sub-frame의 설계기법 연구)

  • Jeon, Byung-Hee
    • Journal of the Korean Society of Safety
    • /
    • v.15 no.2
    • /
    • pp.22-30
    • /
    • 2000
  • The sub-frame of passenger car begins to be used widely for the safety of passengers. Conventional design of the sub-frame comprises 22parts, and it requires quite complicated production processes. In this papers, the sub-frame is designed with TWB(Tailor Welded Blanks) to improve stiffness, to reduce weight and to simplify the manufacturing process. To design the proper structure, structural analysis and crash analysis are executed about the conventional design and TWB applied design. A prototype TWB applied sub-frame is manufactured using mash-seam welded TB(Tailored Blanks). Comparing with the conventional sub-frame, the TWB applied sub-frame has 30% weight reduction and 17% increasement of structural stiffness in average.

  • PDF

항공기 엔진용 유체 마운트의 성능해석

  • An, Yeong-Gong;Ahmadian, Mehdi;Morishita, Shin
    • 유체기계공업학회:학술대회논문집
    • /
    • 1998.02a
    • /
    • pp.220-227
    • /
    • 1998
  • This paper evaluate the performance of a Magneto-Rheological (MR) fluid mount. The mount incorporates MR fluid in a conventional fluid mount to open and closed the inertia track between the fluid chambers of the mount. It is shown that such switching of the inertia track improves the mount's isolation effect, by eliminating the large transmissibility peak that commonly exists at frequencies higher than the notch frequency for conventional fluid mounts. The switching frequencies of the MR mount is evaluated, based on the parameters of the mount. A simple control scheme for switching the mount between the open and closed states is proposed, and the performance of the controlled mount is compared with conventional mounts. A sensitivity analysis is conducted to evaluate the effect of parameter errors in estimating the switching frequencies and mount performance. The results show that the switching frequencies can be accurately determined from mount parameters that are easily measured or estimated.

  • PDF

Comparative measurements of Criteria Pollutants Using DOAS and Conventional In-situ Monitoring Technique at Sung Nam city of Korea

  • Kim, Ki-Hyun;Jin, Byong-Bok
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.17 no.E4
    • /
    • pp.169-181
    • /
    • 2001
  • To test the compatibility of differential optical absorption spectroscopy (DOAS) and conventional in-situ monitoring technique we conducted a comparative analysis of the two systems using hourly measurement data sets of three criteria pollutants including No$_{2}$O$_{3}$, and SO$_{2}$ collected in months between April and June of 2001 at Sung Man city, Kyung Gi Province, Korea. The results of our comparative analysis were useful to evaluate the various aspects of DOAS performance, of particular the level of agreement with the counterpart method through computation of percent differences and correlation analysis. Interpretation of the mixing ratio data for those chemical species was however confined in terms of explaining the differences affected by the changes in environmental conditions because measurements of important meteorological parameters were limited during most of the study period. Nevertheless, the overall results of this study strongly demonstrated that the mixing ratio of major pollutants measured by the two different systems maintain strong compatibility from various respects.

  • PDF

Comparative Study on Pore Closing in Open Die Forging by Conventional Forging Press and Radial Forging Machine (일반자유단조 프레스와 방사형 단조 프레스의 기공 압착에 관한 비교 연구)

  • Kim, S.H.;Lee, M.C.;Jang, S.M.;Eom, J.G.;Joun, M.S.
    • Transactions of Materials Processing
    • /
    • v.19 no.7
    • /
    • pp.399-404
    • /
    • 2010
  • We propose an analysis model for simulating the detailed procedure of pore closing in open die forging of shafts. In the analysis model, an artificial symmetric plane is used, on which initial pores are located to be traced. The analysis model is employed to carry out three-dimensional simulation of pore closing in shaft free forging by both conventional free forging press and radial forging machine. With this result, two typical types of free forging equipment for manufacture of shafts are compared in detail. It has shown that the radial forging machine is much superior to the conventional open die forging press especially in pore closing under high hydrostatic pressure with sound strain.

A Study on Docking Analysis for Conventional LNGC (Conventional LNGC의 도킹 해석에 관한 연구)

  • Choi, Joong-Hyo;Park, Jae-Hyung
    • Special Issue of the Society of Naval Architects of Korea
    • /
    • 2008.09a
    • /
    • pp.10-15
    • /
    • 2008
  • The proper docking block arrangement, loading condition and structural reinforcement are required to ensure structural safety of ship, when she is in re-docking and launching for inspection or repair. The large reaction force due to narrow bottom tangent area, heavy weight and ballast loading are occurred at aft body and fore body of ship. Especially, in case of LNGC, the strength evaluation is necessary for cargo hold areas including mid-body because tank hydro test is performed in dry-dock. The analysis results and experiences to confirm structural safety for docking of conventional LNGC$(138K{\sim}151.7K)$ are introduced in this paper.

  • PDF

Hybrid of topological derivative-based level set method and isogeometric analysis for structural topology optimization

  • Roodsarabi, Mehdi;Khatibinia, Mohsen;Sarafrazi, Seyyed R.
    • Steel and Composite Structures
    • /
    • v.21 no.6
    • /
    • pp.1389-1410
    • /
    • 2016
  • This paper proposes a hybrid of topological derivative-based level set method (LSM) and isogeometric analysis (IGA) for structural topology optimization. In topology optimization a significant drawback of the conventional LSM is that it cannot create new holes in the design domain. In this study, the topological derivative approach is used to create new holes in appropriate places of the design domain, and alleviate the strong dependency of the optimal topology on the initial design. Furthermore, the values of the gradient vector in Hamilton-Jacobi equation in the conventional LSM are replaced with a Delta function. In the topology optimization procedure IGA based on Non-Uniform Rational B-Spline (NURBS) functions is utilized to overcome the drawbacks in the conventional finite element method (FEM) based topology optimization approaches. Several numerical examples are provided to confirm the computational efficiency and robustness of the proposed method in comparison with derivative-based LSM and FEM.