• Title/Summary/Keyword: convection-diffusion

Search Result 226, Processing Time 0.024 seconds

Numerical modelling for evaluating the TMD performance in an industrial chimney

  • Iban, A.L.;Brownjohn, J.M.W.;Belver, A.V.;Lopez-Reyes, P.M.;Koo, K.
    • Wind and Structures
    • /
    • v.17 no.3
    • /
    • pp.263-274
    • /
    • 2013
  • A numerical technique for fluid-structure interaction, which is based on the finite element method (FEM) and computational fluid dynamics (CFD), was developed for application to an industrial chimney equipped with a pendulum tuned mass damper (TMD). In order to solve the structural problem, a one-dimensional beam model (Navier-Bernoulli) was considered and, for the dynamical problem, the standard second-order Newmark method was used. Navier-Stokes equations for incompressible flow are solved in several horizontal planes to determine the pressure in the boundary of the corresponding cross-section of the chimney. Forces per unit length were obtained by integrating the pressure and are introduced in the structure using standard FEM interpolation techniques. For the fluid problem, a fractional step scheme based on a second order pressure splitting has been used. In each fluid plane, the displacements have been taken into account considering an Arbitrary Lagrangian Eulerian approach. The stabilization of convection and diffusion terms is achieved by means of quasi-static orthogonal subscales. For each period of time, the fluid problem was solved and the geometry of the mesh of each fluid plane is updated according to the structure displacements. Using this technique, along-wind and across-wind effects have been properly explained. The method was applied to an industrial chimney in three scenarios (with or without TMD and for different damping values) and for two wind speeds, showing different responses.

Assessment of CUPID code used for condensation heat transfer analysis under steam-air mixture conditions

  • Ji-Hwan Hwang;Jungjin Bang;Dong-Wook Jerng
    • Nuclear Engineering and Technology
    • /
    • v.55 no.4
    • /
    • pp.1400-1409
    • /
    • 2023
  • In this study, three condensation models of the CUPID code, i.e., the resolved boundary layer approach (RBLA), heat and mass transfer analogy (HMTA) model, and an empirical correlation, were tested and validated against the COPAIN and CAU tests. An improvement on HMTA model was also made to use well-known heat transfer correlations and to take geometrical effect into consideration. The RBLA was a best option for simulating the COPAIN test, having mean relative error (MRE) about 0.072, followed by the modified HMTA model (MRE about 0.18). On the other hand, benchmark against CAU test (under natural convection and occurred on a slender tube) indicated that the modified HMTA model had better accuracy (MRE about 0.149) than the RBLA (MRE about 0.314). The HMTA model with wall function and the empirical correlation underestimated significantly, having MRE about 0.787 and 0.55 respectively. When using the HMTA model, consideration of geometrical effect such as tube curvature was essential; ignoring such effect leads to significant underestimation. The HMTA and the empirical correlation required significantly less computational resources than the RBLA model. Considering that the HMTA model was reasonable accurate, it may be preferable for large-scale simulations of containment.

Numerical Analysis of the Effect of a Three-Dimensional Baffle Structure with Variable Cross-Section on the Parallel Flow Field Performance of PEMFC

  • Xuejian Pei;Fayi Yan;Jian Yao;He Lu
    • Journal of Electrochemical Science and Technology
    • /
    • v.14 no.4
    • /
    • pp.333-348
    • /
    • 2023
  • In this study, a 3D model of the proton exchange membrane fuel cell is established, and a new 3D baffle structure is designed, which is combined with the parallel flow field and then optimized by numerical simulation methods. The number of baffles and the cross-sectional trapezoidal base angle are taken as the main variables, and their impacts on the performance indexes of the cathode side are analyzed. The results show that the 3D baffle can facilitate the convection and diffusion mass transfer of reactants, improve the uniformity of oxygen distribution, enhance the drainage capacity, and make the cell performance superior; however, too small angle will lead to excessive local convective mass flux, resulting in the decrease of the overall uniformity of oxygen distribution and lowering the cell performance. Among them, the optimal number of baffles and angle are 9 and 58°, respectively, which improves the net output power density by 10.8% than conventional flow field.

Development and validation of the lead-bismuth cooled reactor system code based on a fully implicit homogeneous flow model

  • Ge Li;Wang Jingxin;Fan Kun;Zhang Jie;Shan Jianqiang
    • Nuclear Engineering and Technology
    • /
    • v.56 no.4
    • /
    • pp.1213-1224
    • /
    • 2024
  • The liquid lead-bismuth cooled fast reactor has been in a single-phase, low-pressure, and high-temperature state for a long time during operation. Considering the requirement of calculation efficiency for long-term transient accident calculation, based on a homogeneous hydrodynamic model, one-dimensional heat conduction model, coolant flow and heat transfer model, neutron kinetics model, coolant and material properties model, this study used the fully implicit difference scheme algorithm of the convection-diffusion term to solve the basic conservation equation, to develop the transient analysis program NUSOL-LMR 2.0 for the lead-bismuth fast reactor system. The steady-state and typical design basis accidents (including reactivity introduction, loss of flow caused by main pump idling, excessive cooling, and plant power outage accidents) for the ABR have been analyzed. The results are compared with the international system analysis software ATHENA. The results indicate that the developed program can stably, accurately, and efficiently predict the transient accident response and safety characteristics of the lead-bismuth fast reactor system.

Effect of Outer Edge Flame on Flame Extinction in Counterflow Diffusion Flames (대향류 확산화염에서 에지화염이 화염소화에 미치는 영향)

  • Chung, Yong-Ho;Park, Dae-Geun;Park, Jeong;Yun, Jin-Han;Kwon, Oh-Boong;Keel, Sang-In
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.2
    • /
    • pp.181-188
    • /
    • 2012
  • The present study on nitrogen-diluted non-premixed counterflow flames with finite burner diameters experimentally investigates the important role of the outer edge flame in flame extinction. Flame stability diagrams mapping the flame extinction response of nitrogen-diluted non-premixed counterflow flames to varying global strain rates in terms of the burner diameter, burner gap, and velocity ratio are explored. There exists a critical nitrogen mole fraction beyond which the flame cannot be sustained, and also the curves of the critical nitrogen mole fraction versus the global strain rate have C-shapes in terms of burner diameter, burner gap, and velocity ratio. In flames with sufficiently high strain rates, the curves of the critical nitrogen mole fractions versus global strain rate collapse into one curve, and the flames can have the 1-D flame response of typical diffusion flames. Three flame extinction modes are identified: flame extinctions through the shrinkage of the outer edge flame with and without an oscillation of the outer edge flame prior to the extinction and flame extinction through a flame hole at the flame center. The measured flame surface temperature and a numerical evaluation of the fractional contribution of each term in the energy equation show that the radial conductive heat loss at the flame edge destabilizes the outer edge flame, and the conductive and convection heat addition to the outer edge from the trailing diffusion flame stabilizes the outer edge flame. The radial conductive heat loss at the flame edge is the dominant extinction mechanism acting through the shrinkage of the outer edge flame.

Analysis of EDCs by Mass Spectrometry and their Removal by Membrane Filtrations (질량분석법에 의한 내분비계 장애물질의 분석과 막 여과에 의한 제거)

  • Kim Tae-Uk;Yeon Kyeong-Ho;Cho Jaeweon;Moon Seung-Hyeon
    • Membrane Journal
    • /
    • v.15 no.4
    • /
    • pp.297-309
    • /
    • 2005
  • As a number of potential endocrine disrupting compounds (EDCs) are released into the environment, recently growing attention has been drawn to them. Therefore sensitive and reliable analytical methods are essential to monitor those compounds. In this study, complementary CC-MS and LC-MS were employed to analyze the endocrine disrupters, and the results of two methods were compared for di(2-ethylhexyl)phthalate (DEHP), benzylbutylphthalate (BBP), pentachlorophenol (PCP), and 4,4'-Isopropylidenediphenol (Bisphenol-A, or BPA). The results indicate that it was possible to lower the detection limits of EDCs by LC-MS. Also, LC-MS enabled to identify the EDCs as almost intact molecules. Furthermore, this study presented a nanofiltration membrane (MWCO 250) and a ultrafiltration membrane (MWCO 1,000) filtration system as methods far removing EDCs from drinking water containing $\gamma$-BHC, p,p'-DDE, BBP, p,p'-DDT, DEHP, PCP, and BPA. Cross-flow type nanofiltrations showed $100\%$ removal of EDCs, and the result implies that MWCO 250 nanofilter was sufficient for treatment of EDCs. The ratio of permeate flux to mass transfer coefficient of nanofiltration, high flux ultrafiltration, and low flux ultrafiltration with ultrapure water were 0.67, 3.4, and 0.44, respectively. It was found that nanofiltration and low flux ultrafiltration were operated at a diffusion dominant condition, and the high flux ultrafiltration was operated at a convection dominant condition. Furthermore, a diffusion dominant process attained reasonable rejection of EDCs. The removal in the ultrafiltration was depending on the molecular weight of an EDC, and the filtration was governed by diffusion-dominant hydrodynamic conditions.

COMPARISON OF FLUX AND RESIDENT CONCENTRATION BREAKTHROUGH CURVES IN STRUCTURED SOIL COLUMNS (구조토양에서의 침출수와 잔존수농도의 파과곡선에 관한 비교연구)

  • Kim, Dong-Ju
    • Journal of Korea Soil Environment Society
    • /
    • v.2 no.2
    • /
    • pp.81-94
    • /
    • 1997
  • In many solute transport studies, either flux or resident concentration has been used. Choice of the concentration mode was dependent on the monitoring device in solute displacement experiments. It has been accepted that no priority exists in the selection of concentration mode in the study of solute transport. It would be questionable, however, to accept the equivalency in the solute transport parameters between flux and resident concentrations in structured soils exhibiting preferential movement of solute. In this study, we investigate how they differ in the monitored breakthrough curves (BTCs) and transport parameters for a given boundary and flow condition by performing solute displacement experiments on a number of undisturbed soil columns. Both flux and resident concentrations have been simultaneously obtained by monitoring the effluent and resistance of the horizontally-positioned TDR probes. Two different solute transport models namely, convection-dispersion equation (CDE) and convective lognormal transfer function (CLT) models, were fitted to the observed breakthrough data in order to quantify the difference between two concentration modes. The study reveals that soil columns having relatively high flux densities exhibited great differences in the degree of peak concentration and travel time of peak between flux and resident concentrations. The peak concentration in flux mode was several times higher than that in resident one. Accordingly, the estimated parameters of flux mode differed greatly from those of resident mode and the difference was more pronounced in CDE than CLT model. Especially in CDE model, the parameters of flux mode were much higher than those of resident mode. This was mainly due to the bypassing of solute through soil macropores and failure of the equilibrium CDE model to adequate description of solute transport in studied soils. In the domain of the relationship between the ratio of hydrodynamic dispersion to molecular diffusion and the peclet number, both concentrations fall on a zone of predominant mechanical dispersion. However, it appears that more molecular diffusion contributes to the solute spreading in the matrix region than the macropore region due to the nonliearity present in the pore water velocity and dispersion coefficient relationship.

  • PDF

Improvement of crossflow model of MULTID component in MARS-KS with inter-channel mixing model for enhancing analysis performance in rod bundle

  • Yunseok Lee;Taewan Kim
    • Nuclear Engineering and Technology
    • /
    • v.55 no.12
    • /
    • pp.4357-4366
    • /
    • 2023
  • MARS-KS, a domestic regulatory confirmatory code of Republic of Korea, had been developed by integrating RELAP5/MOD2 and COBRA-TF. The integration of COBRA-TF allowed to extend the capability of MARS-KS, limited to one-dimensional analysis, to multi-dimensional analysis. The use of COBRA-TF was mainly focused on subchannel analyses for simulating multi-dimensional behavior within the reactor core. However, this feature has been remained as a legacy without ongoing maintenance. Meanwhile, MARS-KS also includes its own multidimensional component, namely MULTID, which is also feasible to simulate three-dimensional convection and diffusion. The MULTID is capable of modeling the turbulent diffusion using simple mixing length model. The implementation of the turbulent mixing is of importance for analyzing the reactor core where a disturbing cross-sectional structure of rod bundle makes the flow perturbation and corresponding mixing stronger. In addition, the presence of this turbulent behavior allows the secondary transports with net mass exchange between subchannels. However, a series of assessments performed in previous studies revealed that the turbulence model of the MULTID could not simulate the aforementioned effective mixing occurred in the subchannel-scale problems. This is obvious consequence since the physical models of the MULTID neglect the effect of mass transport and thereby, it cannot model the void drift effect and resulting phasic distribution within a bundle. Thus, in this study, the turbulence mixing model of the MULTID has been improved by means of the inter-channel mixing model, widely utilized in subchannel analysis, in order to extend the application of the MULTID to small-scale problems. A series of assessments has been performed against rod bundle experiments, namely GE 3X3 and PSBT, to evaluate the performance of the introduced mixing model. The assessment results revealed that the application of the inter-channel mixing model allowed to enhance the prediction of the MULTID in subchannel scale problems. In addition, it was indicated that the code could not predict appropriate phasic distribution in the rod bundle without the model. Considering that the proper prediction of the phasic distribution is important when considering pin-based and/or assembly-based expressions of the reactor core, the results of this study clearly indicate that the inter-channel mixing model is required for analyzing the rod bundle, appropriately.

Analysis of Particle Deposition onto a Heated or Cooled, Horizontal Free-Standing Wafer Surface (가열 또는 냉각되는 수평웨이퍼 표면으로의 입자침착에 관한 해석)

  • 유경훈;오명도;명현국
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.5
    • /
    • pp.1319-1332
    • /
    • 1995
  • Numerical analysis was performed to characterize the particle deposition behavior on a horizontal free-standing wafer with thermophoretic effect under the turbulent flow field. A low Reynolds number k-.epsilon. turbulence model was used to analyze the turbulent flow field around the wafer, and the temperature field for the calculation of the thermophoretic effect was predicted from the energy equation introducing the eddy diffusivity concept. The deposition mechanisms considered were convection, diffusion, sedimentation, turbulence and thermophoresis. For both the upper and lower surfaces of the wafer, the averaged particle deposition velocities and their radial distributions were calculated and compared with the laminar flow results and available experimental data. It was shown by the calculated averaged particle deposition velocities on the upper surface of the wafer that the deposition-free zone, where the deposition velocite is lower than 10$^{-5}$ cm/s, exists between 0.096 .mu.m and 1.6 .mu.m through the influence of thermophoresis with positive temperature difference of 10 K between the wafer and the ambient air. As for the calsulated local deposition velocities, for small particle sizes d$_{p}$<0.05 .mu.m, the deposition velocity is higher at the center of the wafer than at the wafer edge, whereas for particle size of d$_{p}$ = 2.0 .mu.m the deposition takes place mainly on the inside area of the wafer. Finally, an approximate model for calculating the deposition velocities was recommended and the calculated deposition velocity results were compared with the present numerical solutions, those of Schmidt et al.'s model and the experimental data of Opiolka et al.. It is shown by the comparison that the results of the recommended model agree better with the numerical solutions and Opiolka et al.'s data than those of Schmidt's simple model.

The Study on Natural Ventilation in Working Places with the Noxious Gas and Dust (유해가스 및 분진이 발생하는 작업장내의 자연환기에 대한 연구)

  • Chu, Byung-Gil;Kim, Chul;Choi, Jong-ook;Yoo, Soo-Yul
    • Journal of the Korean Society of Safety
    • /
    • v.15 no.1
    • /
    • pp.72-79
    • /
    • 2000
  • In recent, occupational diseases in harmful working places become a social issue. It is the well-known fact that a respiration in polluted working places exert a serious effect on health of workers. Accordingly, the cutting off contaminants air originally is the best way to improve working environments. In these cases, ventilation systems should be essentially installed to dilute or exhaust the contaminated indoor air. In this study, we investigated the characteristics of ventilation system of the noxious gas in working indoor places with natural ventilation by using COMET. The numerical simulations were carried out the natural ventilation with two phase(air, dust). For turbulent flow, Reynolds stresses were closed by the standard $\kappa$-$\varepsilon$ model. The results are as follows ; 1) In the natural exhaust in the working place, the flows of the central region have a more rapid velocity vector than the right and left one. 2) Numerical results show that the distribution of contaminants concentration have greater influence on convection than the case of diffusion by government of velocity vectors. 3) To observe the velocity variation with distance, three location of distance are considered. As results, it shows that the velocity are 0.075(m/s) at y=5(m), 10(m) and mean concentration are raised 10.6% at y=5(m), 10(m). 4) We have presented the useful data for the adequate counterplan in the harmful working places by carrying out the various investigation of the natural ventilation.

  • PDF