• Title/Summary/Keyword: controlled synthesis

Search Result 625, Processing Time 0.031 seconds

Change of Anti-reflective Optical Property by Nano-structural Control of Alumina Layer through Hydro-thermal Process (수열합성 공정을 통한 알루미나 코팅층의 나노구조 조절에 의한 반사방지 특성의 변화)

  • Lee, Yun-Yi;Son, Dae-Hee;Lee, Seung-Ho;Lee, Gun-Dae;Hong, Seong-Soo;Park, Seong-Soo
    • Applied Chemistry for Engineering
    • /
    • v.21 no.5
    • /
    • pp.564-569
    • /
    • 2010
  • Highly anti-reflective optical property has been focussed in the field of thin film and display because of increasing demands to the high transparency and clearness of optical component. In this study, to obtain anti-reflective property, the formation of aluminium oxide with nanoscaled flowerlike frame structure was introduced as oxide material monolayer on the substrate by hydrothermal synthesis through sol-gel method. The properties of coating layer were measured by the means of UV-Vis spectroscopy, FT-IR spectroscopy, XRD, and FE-SEM. The morphology of coating layer in alumina-sol coated samples was controlled by hydrothermal temperature and time with aid of ultrasound. It was found that high transparency and anti-reflective optical properties were obtained the formation of flowerlike nanoframe structure.

Synthesis of Porous Cu-Sn by Freeze Drying and Hydrogen Reduction Treatment of Metal Oxide Composite Powders (금속산화물 복합분말의 동결건조 및 수소분위기 환원처리에 의한 Cu-Sn 다공체 제조)

  • Kim, Min-Sung;Yoo, Ho-Suk;Oh, Sung-Tag;Hyun, Chang-Yong
    • Korean Journal of Materials Research
    • /
    • v.23 no.12
    • /
    • pp.722-726
    • /
    • 2013
  • Freeze drying of a porous Cu-Sn alloy with unidirectionally aligned pore channels was accomplished by using a composite powder of CuO-$SnO_2$ and camphene. Camphene slurries with CuO-$SnO_2$ content of 3, 5 and 10 vol% were prepared by mixing with a small amount of dispersant at $50^{\circ}C$. Freezing of a slurry was done at $-25^{\circ}C$ while the growth direction of the camphene was unidirectionally controlled. Pores were generated subsequently by sublimation of the camphene during drying in air for 48 h. The green bodies were hydrogen-reduced at $650^{\circ}C$ and then were sintered at $650^{\circ}C$ and $750^{\circ}C$ for 1 h. XRD analysis revealed that the CuO-$SnO_2$ powder was completely converted to Cu-Sn alloy without any reaction phases. The sintered samples showed large pores with an average size of above $100{\mu}m$ which were aligned parallel to the camphene growth direction. Also, the internal walls of the large pores had relatively small pores. The size of the large pores decreased with increasing CuO-$SnO_2$ content due to the change of the degree of powder rearrangement in the slurry. The size of the small pores decreased with increase of the sintering temperature from $650^{\circ}C$ to $750^{\circ}C$, while that of the large pores was unchanged. These results suggest that a porous alloy body with aligned large pores can be fabricated by a freeze-drying and hydrogen reduction process using oxide powders.

Synthesis of TiO2 Fine Powder by Sol-Gel Process and Reaction Mechanism(I): Hydrolysis of Titanium Isopropoxide (졸-겔법에 의한 TiO2 미분말 합성과 반응메카니즘(I): Titanium isopropoxide의 가수분해)

  • Myung, Jung-Jae;Chung, Yong-Sun;Kyong, Jin-Bum;Kim, Ho-Kun
    • Applied Chemistry for Engineering
    • /
    • v.7 no.4
    • /
    • pp.794-801
    • /
    • 1996
  • $TiO_2$ fine powders were synthesized via hydrolysis reaction of titanium isopropoxide in isopropanol solvent and the reaction rates were studied by use of UV spectroscopic method. The reactions were controlled to proceed to pseudo-first-order reaction in the presence of excess water in isopropanol solvent. The rate constants which varied with temperature and concentration of water were calculated by Guggenheim method. Reactions using $D_2O$ were also carried out to determine the catalytic character of water. n value of water molecules in transition state and the thermodynamic parameters showed that the reaction proceeded by $S_N2$ mechanism. $TiO_2$ powders synthesized in this reaction were almost spheric forms and had average particle size of $0.3{\mu}m$ diameter.

  • PDF

Synthesis and Characterization of Organo-modified Montmorillonite by Ion-exchange Method (유기물로 수식된 몬트모릴로나이트 제조 및 특성조사)

  • Kim, Jae-Myung;Yoo, Jung-Whan;Choi, Eui-Seok;Lee, Sung-Min;Kim, Hyung-Tae
    • Journal of the Korean Ceramic Society
    • /
    • v.41 no.1
    • /
    • pp.41-44
    • /
    • 2004
  • Hydrophilicity and hydrophobicity of pottery bodies can be controlled via chemical substitution of layered clay with hydrophilic and hydrophobic organics. In this study, organo-clay nanocomposites were prepared by ion-exchange of montmorillonite with dodecylamine and hexadecylamine, respectively. Substitution sites of organics and the interval changes of layered materials are characterized by FT-IR and WAXD and organics amounts loaded and water comtents contained by C/S analysis and TG-DSC. The organics were selectively intercalated so that increase layer interval from 12${\AA}\; to\;16{\AA}$. Organo-modified clay is changed to more hydrophobic comparing to clay itself.

3D Architectures of LaVO4:Eu3+ Microcrystals via an EG-assisted Hydrothermal Method: Phase Selective Synthesis, Growth Mechanism and Luminescent Properties

  • Ding, Yi;Zhang, Bo;Ren, Qifang;Zhang, Qicai;Zha, Weiwei;Li, Xin;Chen, Shaohua;Oh, Won-Chun
    • Journal of the Korean Ceramic Society
    • /
    • v.54 no.2
    • /
    • pp.96-101
    • /
    • 2017
  • In this article, pure $m-LaVO_4:Eu^{3+}$ and $t-LaVO_4:Eu^{3+}$ nanocrystals were prepared by an EG-assisted hydrothermal method with regular shapes. A series of controlled experiments showed that the pH value of a mixed solution, the volume ratio of $EG/H_2O$ and the dosage of the doped $Eu^{3+}$ all had an important effect on the sizes and shapes of the final products. Furthermore, the constitutional unit of the products changed from 0D to 2D with an increase in the EG dosage. The PL results showed that $t-LaVO_4$ doped with $Eu^{3+}$ ions had better luminescence properties than $m-LaVO_4$ due to its special structure. All of these results not only expand our understanding of the luminescence properties of lanthanide orthovanadates, but they also elucidate the principles of the crystal growth.

Preparation of Porous Boehmite Gel from Waste AlCl3 Solution (AlCl3 폐액으로부터 다공성 Boehmite Gel의 제조)

  • Park, Byung-Ki;Lee, Hak-Soo;Kim, Young-Ho;Lee, Jung-Min
    • Journal of the Korean Ceramic Society
    • /
    • v.41 no.11
    • /
    • pp.864-871
    • /
    • 2004
  • Porous pseudo-boehmite gel was prepared through the aging process of amorphous aluminum hydroxides gel precipitated by the hydrolysis reaction of dilute NaOH solution and AlCl$_3$ solution. In this study, the synthesis method was studied on porous pseudo-boehmite gel having maximum pore volume, as being investigated the changes of crystal structure, infrared rays absorption spectrum, BET surface area and pore structure when the hydrolysis reaction is controlled in the range of pH 7.6~11.6 and the aging process is hold up for 2~24 h at 60~10$0^{\circ}C$. We could find that the gel precipitates deposited in in range of pH 7.6~9.6 were developed into porous pseudo-boehmite which surface area was 250~357 $m^2$/g, pore volume was 0.4~0.7 cc/g and average pore size was 58~l14$\AA$. However, the gel precipitates deposited in range of pH 10.6~11.6 were developed into bayerite which pore volume was very little.

The Powder Synthesis of (Bi,Pb)-2223 System Superconductor by Oxalate Method and Thick Film Preparation (옥살산염법에 의한 (Bi, Pb)-2223계 초전도 분말 합성과 후막 제조)

  • 하성원;김형태;이응상
    • Journal of the Korean Ceramic Society
    • /
    • v.34 no.10
    • /
    • pp.1083-1091
    • /
    • 1997
  • As one of the chemical powder fabrication methods, the powder preparation method by using oxalate has the following advantages; (1) easy to control the chemical stoichiometry, (2) easy to fabricate homogeneous and fine particles, and (3) easy to be thermaly decomposed at low temperature. In the present study, the initial morphology and size distribution of the powder were controlled and the homogeniaty was improved. By carefully controlling the pH with NH4OH, the Bi(Pb)-Sr-Ca-Cu-O superconducting powders were prepared and investigated for their properties. The microstructures and the superconducting properties of the pelletized samples were investigated. Also, the microstructures and electrical properties of the samples prepared by tape casting method were investigated. The fabricated powders were spherical with less than 400 nm, but most of them were agglomerated to be 1~3 ${\mu}{\textrm}{m}$ in size. The critical temperature of the pelletized sample annealed at 84$0^{\circ}C$ for 72 hours in air was 110K. And the critical currents of annealed samples in air prepared by tape casting process for 24 hours and 72 hours were 0.6 A (Jc=600A/$\textrm{cm}^2$) and 1.9A (Jc=1, 900A/$\textrm{cm}^2$) respectively.

  • PDF

Synthesis of TiO2 Composited Nitrogen-doped Carbon Supports for High-Performance Methanol Oxidation Activity (고성능 메탄올 산화 반응을 위한 이산화 티타늄 복합화된 질소 도핑 탄소 지지체의 합성)

  • Jo, Hyun-Gi;Ahn, Hyo-Jin
    • Korean Journal of Materials Research
    • /
    • v.30 no.1
    • /
    • pp.14-21
    • /
    • 2020
  • Carbon supports for dispersed platinum (Pt) electrocatalysts in direct methanol fuel cells (DMFCs) are being continuously developed to improve electrochemical performance and catalyst stability. However, carbon supports still require solutions to reduce costs and improve catalyst efficiency. In this study, we prepare well-dispersed Pt electrocatalysts by introducing titanium dioxide (TiO2) into biomass based nitrogen-doped carbon supports. In order to obtain optimized electrochemical performance, different amounts of TiO2 component are controlled by three types (Pt/TNC-2 wt%, Pt/TNC-4 wt%, and Pt/TNC-6 wt%). Especially, the anodic current density of Pt/TNC-4 wt% is 707.0 mA g-1pt, which is about 1.65 times higher than that of commercial Pt/C (429.1 mA g-1pt); Pt/TNC-4wt% also exhibits excellent catalytic stability, with a retention rate of 91 %. This novel support provides electrochemical performance improvement including several advantages of improved anodic current density and catalyst stability due to the well-dispersed Pt nanoparticles on the support by the introduction of TiO2 component and nitrogen doping in carbon. Therefore, Pt/TNC-4 wt% may be electrocatalyst a promising catalyst as an anode for high-performance DMFCs.

Synthesis and Characterization of New Positive Type Photosensitive Poly(amic acid)s (신규 양성형 감광성 폴리암산의 합성 및 특성 연구)

  • Sim Hyun-Bo;Yu Yeong-Im;Yi Mi-Hye
    • Polymer(Korea)
    • /
    • v.30 no.2
    • /
    • pp.162-167
    • /
    • 2006
  • Polyamic acid (PAA) was prepared from cyclobutane-1,2,3,4-tetracarboxylic dianhydride (CBDA) and 4,4'-fiaminodiphenyl ether (DDE). In order to impart a photosensitivity to the PAA, diazonaphthoquinone (DNQ) derivative (DI) was added. However, the addition of the DI was not enough to inhibit the dissolution of the PAA for a aqueous alkal solution. Therefore, we had synthesized poly(amic acid ester)s by an adding 1,2-epoxy-3-phenoxypropane to the PAA. That is, an acidity of the PAA could be controlled by an esterification reaction of 1,2-epoxy-3-phenoxypropane with the PAA. Significant difference of a dissolution rate of the poly(amic acid ester) between an o(posed and unexposed area was observed at an acid content of 60% and less. Resolution of the positively patterned film showed about $25{\mu}m$ at the exposure dose of $200mJ/cm^2$.

Synthesis of Hyaluronic Acid Scaffold for Tissue Engineering and Evaluation of Its Drug Release Behaviors (히아루론산을 이용한 조직공학용 Scaffold의 제조와 약물 방출 거동에 관한 연구)

  • Nam, Hye-Sung;Kim, Ji-Heng;An, Jeong-Ho;Chung, Dong-June
    • Polymer(Korea)
    • /
    • v.25 no.4
    • /
    • pp.476-485
    • /
    • 2001
  • In this study, we tried to design and synthesize using natural polymers (hyaluronic acid and sodium alginate) and also to make some kinds of scaffolds as sponge type for reducing the burst effect of loaded drug from them. Photo-dimerizable group was incorporated to hyaluronic acid and degradable hydrogel was prepared by the UV radiation of the polymer. The pore size and its distribution of scaffold were controlled by changing microsphere production conditions such as solution concentration and spraying pressure. It was found that drug release behavior from synthesized scaffolds was affected by hybridization of two naturally originated polymers (cinnamoylated tetrabutylammonium hyaluronate: CHT and cinnamolylated sodium alginate: CSA) and the obtained scaffolds were degraded in fairly long time (about 2 months) under in vitro environment. Therefore, we expect that obtained scaffolds can be applicable for the tissue regeneration scaffolds in the fields of orthopaedic surgery.

  • PDF