• Title/Summary/Keyword: controlled synthesis

Search Result 625, Processing Time 0.027 seconds

Synthesis and Characterization of Y2O3 Powders by a Modified Solvothermal Process

  • Jeong, Kwang-Jin;Bae, Dong-Sik
    • Korean Journal of Materials Research
    • /
    • v.22 no.2
    • /
    • pp.78-81
    • /
    • 2012
  • $Y_2O_3$ nanomaterials have been widely used in transparent ceramics and luminescent devices. Recently, many studies have focused on controlling the size and morphology of $Y_2O_3$ in order to obtain better material performance. $Y_2O_3$ powders were prepared under a modified solvothermal condition involving precipitation from metal nitrates with aqueous ammonium hydroxide. The powders were obtained at temperatures at $250^{\circ}C$ after a 6h process. The properties of the $Y_2O_3$ powders were studied as a function of the solvent ratio. The synthesis of $Y_2O_3$ crystalline particles is possible under a modified solvothermal condition in a water/ethylene glycol solution. Solvothermal processing condition parameters including the pH, reaction temperature and solvent ratio, have significant effects on the formation, phase component, morphology and particle size of yttria powders. Ethylene glycol is a versatile, widely used, inexpensive, and safe capping organic molecule for uniform nanoparticles besides as a solvent. The characterization of the synthesized Y2O3 powders were studied by XRD, SEM (FE-SEM) and TG/DSC. An X-ray diffraction analysis of the synthesized powders indicated the formation of the $Y_2O_3$ cubic structure upon calcination. The average crystalline sizes and distribution of the synthesized $Y_2O_3$ powders was less than 2 um and broad, respectively. The synthesized particles were spherical and hexagonal in shape. The morphology of the synthesized powders changed with the water and ethylene glycol ratio. The average size and shape of the synthesized particles could be controlled by adjusting the solvent ratio.

Properties of Cement Mortar as Particle Size and Hydrothermal Synthesis Temperature Using Scheelite Tailing (중석 광미를 사용한 시멘트 모르타르의 입도 및 수열합성온도별 물리적 특성)

  • Chu, Yong Sik;Seo, Seong Gwan;Choi, Sung Bum;Kim, Gyoung man;Hong, Seok Hwan
    • Resources Recycling
    • /
    • v.28 no.6
    • /
    • pp.46-53
    • /
    • 2019
  • Cement mortar was hydrothermal-synthesized with particle size of tailings using scheelite tailings deposited without proper treatment, and its physical properties were investigated. The mixing ratios of water-cement and sand-cement were fixed at 75 % and 400 %, respectively, during preparing cemnt mortar, and the sand was replaced by the tailings at 0 ~ 50 %. The particle size of tailings was controlled at 9.3 ~ 53.0 ℃, and the hydrothermal temperature was kept at 60 ~ 180 ℃ for 6 hours after the temperature increased to pretermined temperature with 2 ℃ heating rate. The compressive strength increased with increasing hydrothermal temperature. The compressive strengths were 55.2 MPa and 54.5 MPa when the mortars were prepared with 30 % low arsenic and high arsenic tailings after 60 min grinding. The compresiive strenght was enhanced 300 % compared with reference sample.

INDUCTION OF CYTOCHROME P-450 ASSOCIATED MONOOXYGENASE ACTIVITIES BY PHENOBARBITAL AND 3-METHYLCHOLANTHRENE IN PRIMARY CULTURES OF ADULT RAT HEPATOCYTES

  • Park, Seong-Kyu;Ha, Jong-Ryul;Kim, H.M.;Yang, K.H.
    • Toxicological Research
    • /
    • v.3 no.1
    • /
    • pp.1-8
    • /
    • 1987
  • In vitro induction of cytochrome 450 associated monooxygenase activities by phenobarbital (PB) and 3-methylcholanthrene (MC) was investigated in primary cultures of adult rat hepatocytes. PB and MC were added to the culture 24 hr after the initial plating of hepatocytes. A signiftcant increase of the activities of 7-ethoxycoumarin 0-deethylase and aryl hydrocarbon hydroxylase were observed in MC and PB treated culture. MC caused about 500% induction of the initial oxidation rates of both enzymes in 48 hr. However the PB maintained both enzyme activities close to the level of freshly isolated hepatocytes. Biphenyl 4-hydroxylase and aminopyrine N-demethylase activities were also induced by MC and PB. But the level of induction was less than that occuring with 7-ethoxycoumarin 0-deethylase and aryl hydrocarbon hydroxylase. When aflatoxin $B_1$ was added to the hepatocyte cultures which have been treated with MC or PB, it caused a significant increase of the unscheduled DNA synthesis at higher dose of aflatoxin $B_1$ as compared to those of untreated control hepatocyte cultures. The results suggest that microsomal enzyme activities can be selectively controlled preferably in hepatocyte cultures by the in vitro induction method. This principle may be useful for studying the metabolism and other toxicological studies.

  • PDF

Hydrothermal Synthesis of Saponite from Talc (활석을 이용한 사포나이트의 수열합성)

  • 배인국;장영남;채수천;류경원;최상훈
    • Journal of the Mineralogical Society of Korea
    • /
    • v.16 no.2
    • /
    • pp.125-133
    • /
    • 2003
  • Saponite was synthesized from talc by hydrothermal method. The starting material was prepared by adding ($NO_3$)$Al_3$$.$$9H_2$O and Mg($NO_3$)$_2$$.$$6H_2$O solution to the talc powder. which was previously activated in air at 800 $^{\circ}C$ together with $Na_2$$CO_3$. The alkalinity of the solution was controlled by $NH_4$OH solution. The autoclaving was carried out in the closed stainless steel vessel (about 1 liter) for 40 hours under the pressure of 25 kgf/$\textrm{cm}^2$ at $ 230^{\circ}C$ The characterization of the reaction product shows that saponite was crystallized successfully. After the experimental results, pressure was not sensitive parameter in the range of 25 ∼ 75 kgf/$\textrm{cm}^2$, but longer reaction time results in better crystallinity.

PAHs Formation Characteristics and Fullerenes $(C_{60},\;C_{70})$ Synthesis in a Low-Pressure $C_6H_6/Ar/O_2$ Flame (저압 $C_6H_6/Ar/O_2$ 화염에서 PAHs 생성 특성 및 플러렌$(C_{60},\;C_{70})$ 합성에 대한 연구)

  • Lee, G.W.;Kim, Y.W.;Hwang, J.;Jrung, J.;Choi, M.
    • Journal of the Korean Society of Combustion
    • /
    • v.7 no.4
    • /
    • pp.36-44
    • /
    • 2002
  • Carbon molecules with closed-cage structures are called fullerenes $(C_{60},\;C_{70})$, whose applications include super-conductors, sensors, catalysts, optical and electronic device, polymer composites, and biological and medical materials. The synthesis of fullerenes has been recently studied with low-pressure benzene/argon/oxygen flames. The formation of fullerene is known as molecular weight growth processes of PAHs (polycyclic aromatic hydrocarbon). This study presents results of PAHs and fullerene measurements performed in a low-pressure benzene/argon/oxygen normal co-flow laminar diffusion flame. Through the central tube of the burner, benzene vapors carried by argon are injected. The benzene vapors are made in a temperature-controlled bubbler. The burner is located in a chamber, equipped with a sampling system for direct collection of condensable species from the flame, and exhausted to a vacuum pump. Samples of the condensable are analyzed by HPLC (High Performance Liquid Chromatography) to determine the yields of PAHs and fullerene. Also, we computed mole fraction of fullerene and PAHs in a nearly sooting low pressure premixed, one-dimensional benzene/argon/oxygen flame (equivalence ratio ${\Phi}=2.4$, pressure=5.33kPa). The object of computation was to investigate the formation mechanism of fullerenes and PAHs. The computations were performed with CHEMKIN/PREMIX. As a result of this study, fullerenes were synthesized in a low pressure (20torr) $C_6H_6/Ar/O_2$ flames and the highest concentration of fullerene was detected just above the visible surface of a flame.

  • PDF

Process variables of gamma-type aluminum trihydride in wet chemical synthesis (감마형 삼수소 알루미늄 습식합성반응의 공정변수 연구)

  • Yang, Yo-Han;Kim, Woo-Ram;Gwon, Yoon-Ja;Park, Mi-Jeong;Kim, Jun-Hyung;Cho, Young-Min
    • Journal of the Korean Applied Science and Technology
    • /
    • v.35 no.1
    • /
    • pp.214-222
    • /
    • 2018
  • Alane(aluminum trihydride, $AlH_3$) is a candidate material involving high energetic capacity for solid propellant or explosives. In this study aluminum trihydride-etherate ($AlH_3{\cdot}(C_2H_5)_2O$) was synthesized through a wet process, and solid alane was extracted by controlled crystallization. Alane crystals were grown during the crystallization step with phase conversion of aluminum trihydride-etherate to alane using an anti-solvent. Stable crystal forms were found by a 2 hour crystallization process at $85^{\circ}C$. Finally the extracted solid aluminium trihydride consisted mainly of ${\gamma}-type$ with $50-100{\mu}m$ in size.

The Synthesis of CdTe Nanowires Based on Stabilizers with Low Concentrations (저비율의 안정제를 이용한 CdTe 나노선 합성)

  • Kim, Ki-Sub;Kang, Jeong Won
    • Korean Chemical Engineering Research
    • /
    • v.53 no.6
    • /
    • pp.798-801
    • /
    • 2015
  • Nanomaterials (NMs) based on cadmium telluride (CdTe) are the theme of numerous research areas due to their unique chemical and physical properties. NM synthesis via a size-controlled procedure has become an intriguing research topic because NMs exhibit novel optical and physical properties depending on their size and shape. In this study, we prepared CdTe nanowires (NWs) via self-assembly from individual Nanoparticles (NPs). Thioglycolic acid (TGA)-to-Cd ion ratio of 1.3 was used instead of the traditional value of 2.4 and the reduced amount of stabilizer resulted in reorganization from individual NPs into NWs consisting of multi-layers of individual NPs. Transmission electron microscopy (TEM) and scanning electron microscopy (SEM) were performed to characterize NWs. The produced nanowires were straight and long in shape and their length ranged from 500 nm to tens of micrometers.

An Efficient Method for Synthesis of PEO-Based Macromonomer and Macroinitiator

  • Kim, Jung-Ahn;Choi, Song-Yee;Kim, Kyung-Min;Go, Da-Hyeon;Jeon, Hee-Jeong;Lee, Jae-Yeol;Park, Hyeong-Soo;Lee, Cheol-Han;Park, Heung-Mok
    • Macromolecular Research
    • /
    • v.15 no.4
    • /
    • pp.337-342
    • /
    • 2007
  • The n-butyllithium-initiated ring-opening polymerization of ethylene oxide, in a mixture of benzene and dimethylsulfoxide (DMSO), between $25-45^{\circ}C$, with potassium tert-butoxide, is a useful and powerful method to control the molecular weight as well as achieve a quantitative chain-end functionalization yield of the resulting polymeric alkoxide via a one pot synthesis. The molecular weight of the product could be controlled by adjusting the ratio of grams of monomer to moles of initiators, such as n-butyllithium ([n-BuLi]) and potassium t-butoxide ([t-BuOK]). The yields for the macromonomer and ${\omega}-brominated$ poly(ethylene oxide) (PEO) were quantitative in relation to the chain-end functionalizations of the polymeric alkoxide formed. The resulting products were characterized by a combination of $^1H-NMR$ spectroscopic and size exclusion chromatographic analyses.

Studies on the Synthesis of Nonionic Surfactants (III). Kinetics of the Synthesis of Sucrose Esters (비이온성 계면활성제의 합성에 관한 연구 (제3보). 슈크로오스에스테르의 합성에 관한 동력학적 고찰)

  • Ki Dae Nam;Joo Hwan Sohn
    • Journal of the Korean Chemical Society
    • /
    • v.25 no.4
    • /
    • pp.283-290
    • /
    • 1981
  • The reaction rates for the transesterification reaction were measured on the excess sucrose with the five fatty acid methyl ester systems such as methyl laurate, methyl myristate, methyl palmitate, methyl stearate and methyl oleate at temperature range of $50^{\circ}C$ to $90^{\circ}C$ in N,N-dimethylformamide solvent and potassium carbonate as a catalyst. Their activation parameters as well as rate constants were calculated from these measurements. And these reactions were found to be pseudo-first order and depended mainly on the structural changes in fatty acid residue of methyl esters. Also their reactions were found to be of enthalpy-controlled, which were disfavored in the order of methyl laurate, methyl myristate, methyl palmitate, methyl oleate and methyl stearate. Correspondingly their activation energies were 9.3, 9.9, 10.3, 10.9 and 11.1 kcal/mole, respectively.

  • PDF

Synthesis of Size Controlled Spherical Silica Nanoparticles via Sol-Gel Process within Hydrophilic Solvent

  • Kim, Tae Gyun;An, Gye Seok;Han, Jin Soon;Hur, Jae Uk;Park, Bong Geun;Choi, Sung-Churl
    • Journal of the Korean Ceramic Society
    • /
    • v.54 no.1
    • /
    • pp.49-54
    • /
    • 2017
  • In this study, based on hydrolysis and condensation via $St{\ddot{o}}ber$ process of sol-gel method, synthesis of mono-dispersed silica nanoparticles was carried out with hydrophilic solvent. This operation was expected to be a more simplified process than that with organic solvent. Based on the sol-gel method, which involves simply controlling the particle size, the particle size of the synthesized silica specimens were ranged from 30 to 300 nm by controlling the composition of tetraethylorthosilicate (TEOS), DI water and ammonia solution, and by varying the stirring speeds while maintaining a fixed amount of ethanol. Increasing the content of DI water and decreasing the content of ammonia caused the particle size to decrease, while controlling the stirring speed at a high level of RPMs enabled a decrease of the particle size. X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FT-IR) were utilized to investigate the success factors for synthesizing process; Field emission scanning electron microscopy (FE-SEM) was used to study the effects of the size and morphology of the synthesized particles. To analyze the dispersion properties, zeta potential and particle size distribution (PSD) analyses were utilized.