Browse > Article

An Efficient Method for Synthesis of PEO-Based Macromonomer and Macroinitiator  

Kim, Jung-Ahn (Research Institute of Basic Sciences and Department of Chemistry, Kyung Hee University)
Choi, Song-Yee (Research Institute of Basic Sciences and Department of Chemistry, Kyung Hee University)
Kim, Kyung-Min (Research Institute of Basic Sciences and Department of Chemistry, Kyung Hee University)
Go, Da-Hyeon (Research Institute of Basic Sciences and Department of Chemistry, Kyung Hee University)
Jeon, Hee-Jeong (Research Institute of Basic Sciences and Department of Chemistry, Kyung Hee University)
Lee, Jae-Yeol (Research Institute of Basic Sciences and Department of Chemistry, Kyung Hee University)
Park, Hyeong-Soo (Department of Chemical Engineering, Sogang University)
Lee, Cheol-Han (Department of Chemical Engineering, Sogang University)
Park, Heung-Mok (Department of Chemical Engineering, Sogang University)
Publication Information
Macromolecular Research / v.15, no.4, 2007 , pp. 337-342 More about this Journal
Abstract
The n-butyllithium-initiated ring-opening polymerization of ethylene oxide, in a mixture of benzene and dimethylsulfoxide (DMSO), between $25-45^{\circ}C$, with potassium tert-butoxide, is a useful and powerful method to control the molecular weight as well as achieve a quantitative chain-end functionalization yield of the resulting polymeric alkoxide via a one pot synthesis. The molecular weight of the product could be controlled by adjusting the ratio of grams of monomer to moles of initiators, such as n-butyllithium ([n-BuLi]) and potassium t-butoxide ([t-BuOK]). The yields for the macromonomer and ${\omega}-brominated$ poly(ethylene oxide) (PEO) were quantitative in relation to the chain-end functionalizations of the polymeric alkoxide formed. The resulting products were characterized by a combination of $^1H-NMR$ spectroscopic and size exclusion chromatographic analyses.
Keywords
poly(ethylene oxide); molecular weight control; chain-end functionalizations; macromonomer; macroinitiator;
Citations & Related Records

Times Cited By Web Of Science : 10  (Related Records In Web of Science)
Times Cited By SCOPUS : 10
연도 인용수 순위
1 R. P. Quirk, Anionic synthesis of polymers with functional groups, in Comprehensive Polymer Science, S. L. Aggarwal and S. Russo, Eds., Pregamon Press, Seoul, 1992, Suppl. Vol., Chap. 5, pp 82-106
2 R. P. Quirk, J. Kim, K. Rodrigues, and W. L. Mattice, Makromol. Chem., Macromol. Symp., 42/43, 463 (1991)
3 L. Brandsma and H. Verkruijsse, Preparative Polar Organometallic Chemistry 1, Springer-Verlag, Berlin Heidelberg, 1987, Chap. II, p 41
4 C. C. Price and D. D. Carmelite, J. Am. Chem. Soc., 88, 4039 (1966)
5 H. L. Hsieh and R. P. Quirk, Anionic Polymerization: Principles and Practical Applications, Marcel Dekker, New York, 1996, Chap. 4, pp 71-92
6 Advances in lithium-ion batteries, B. Scrosati and W. Schalkwijk, Eds., Plenum, New York, 2002
7 D. H. Richards and M. Szwarc, Trans. Faraday Soc., 55, 1644 (1959)   DOI
8 J. M. Harris and R. B. Chess, Nature Rev. Drug Disc., 2, 214 (2003)   DOI   ScienceOn
9 J. M. Stouffer and T. J. McCarthy, Macromolecules, 21, 1204 (1988)
10 J.-F. Lutz and A. Hoth, Macromolecules, 39, 893 (2006)
11 M. Morton and L. J. Fetters, Rubber Chem. Technol., 48, 359 (1975)
12 J. E. Figueruelo and D. J. Worsfold, Eur. Polym. J., 4, 439 (1968)
13 V. Halaska, L. Lochmann, and D. Lim, Collect. Czec. Chem. Commun., 33, 3245 (1968)   DOI
14 R. Duncan, Nature Rev. Drug Disc., 2, 347 (2003)   DOI   ScienceOn
15 S. Slomkowski and A. Duda, Anionic Ring-Opening Polymerization, in Ring-opening Polymerization; Mechanisms, Catalysis, Structure, Utility, D. J. Brunelle, Ed., Hanser, New York, 1993, Chap. 3, pp 87-128
16 R. P. Quirk and J. J. Ma, J. Polym. Sci.; Part A: Polym. Chem., 24, 2031 (1988)
17 W. S. Shim, J. S. Lee, and D. S. Lee, Macromol. Res., 13, 344 (2005)
18 H. Gilman and F. K. Cartledge, J. Organomet. Chem., 2, 447 (1964)
19 H. L. Hsieh and R. P. Quirk, Anionic Polymerization: Principles and Practical Applications, Marcel Dekker, New York, 1996, Chap. 24, pp 685-710
20 R. P. Quirk and J. Kim, Macromonmers and Macroinitiators, in Ring-opening Polymerization; Mechanisms, Catalysis, Structure, Utility, D. J. Brunelle, Ed., Hanser, New York, 1993, Chap. 9, pp 263-293
21 R. Satchi-Tainaro, R. Duncan, and C. M. Barnes, Adv. Polym. Sci., 193, 1 (2006)   DOI
22 D. Swierczynski, A. Zalewska, and W. Wieczorek, Chem. Mater., 13, 1560 (2001)   DOI   ScienceOn
23 R. P. Quirk, J. Kim, C. Kausch, and M. Chun, Polym. Int., 39, 3 (1996)
24 J.-M. Tarascon and M. Armand, Nature, 414, 359 (2001)
25 M. Sharpe, S. E. Easthope, G. M. Keating, and H. M. Lamb, Drugs, 62, 2089 (2002)
26 T.-L. Cheng, C.-M. Cheng, B.-M. Chen, S.-A. Tsao, K.-H. Chuang, S.-W. Hsiao, Y.-H. Lin, and S. R. Roffler, Biconjugate Chem., 16, 1225 (2005)
27 M. Schlosser, J. Organomet. Chem., 8, 9 (1967)
28 C. E. H. Bawn, A. Ledwith, and N. McFarlane, Polymer, 10, 653 (1969)
29 F. Croce, R. Curini, A. Martinelli, L. Persi, F. Ronci, B. Scrosati, and R. Caminiti, J. Phys. Chem. B, 103, 10632 (1999)   DOI   ScienceOn
30 H.-M. Xiong, D.-P. Liu, H. Zhang, and J.-S. Chen, J. Mater. Chem., 14, 2775 (2004)
31 A. Napoli, N. Tirelli, G. Kilcher, and J. A. Hubbell, Macromolecules, 34, 8913 (2001)   DOI   ScienceOn
32 L. E. St. Pierre and C. C. Price, J. Am. Chem. Soc., 78, 3432 (1956)
33 B. Esswein and M. Moller, Angew. Chem. Int. Ed. Engl., 35, 623 (1996)