• Title/Summary/Keyword: controlled rolling process steel

Search Result 23, Processing Time 0.027 seconds

High Strength Low Alloy Steel for Sour Service

  • Jung, Hwan Gyo;Kim, Sang Hyun;Yang, Boo Young;Kang, Ki Bong
    • Corrosion Science and Technology
    • /
    • v.7 no.5
    • /
    • pp.288-295
    • /
    • 2008
  • The increase use of natural gas as an energy source has been continuous demand for ever-increasing strength in gas transmission pipeline materials in order to achieve safe and economic transportation of natural gas. In particular, linepipe material for sour gas service primarily needs to have crack resistant property. However, applications of sour linepipes are expanding toward deep water or cold region, which require higher toughness and/or heavier wall thickness as well as higher strength. To improve the crack resistance of linepipe steel in sour environment, low alloy steel are produced by controlled rolling subsequently followed by the accelerated cooling process. This paper summarizes the design concepts for controlling crack resistant property low alloy linepipe steels for sour gas service.

Low cycle fatigue behaviour of TMCP steel in as-received and welded states (TMCP 고장력강재와 그 용접부의 저사이클피로특성에 관한 연구)

  • 김영식;한명수
    • Journal of Welding and Joining
    • /
    • v.8 no.4
    • /
    • pp.46-57
    • /
    • 1990
  • TMCP steel manufactured by controlled rolling followed by accelerated cooling process is known to have extra-ordinary mechanical properties such as tensile strength and toughness. However, there is much uncertainty about the fatigue fracture characteristics, especially, in the welded state of this steel. In case of this steel, the softening zone by welding is generated in heat affected zone in contrast with the case of conventional normalized high strength steel. This softening zone is considered to play significant roles in low cycle fatigue fracture of the welded part of this steel. In this paper, the low cycle fatigue behaviors of TMCP steel were inspected in as-received and welded state using the smooth specimen. The fatigue life-time was seperately investigated on the basis of failure of the specimen and crack initiation which is detected by differential strain method. Moreover, the low cycle fatigue characteristics of TMCP steel were quantitatively compared with those of the conventional normalized steel of same strength level.

  • PDF

Continuous Cooling Transformation, Microstructure and Mechanical Properties of High-Strength Low-Alloy Steels Containing B and Cu (B과 Cu가 포함된 고강도 저합금강의 연속냉각 변태와 미세조직 및 기계적 특성)

  • Hwang, Byoungchul
    • Korean Journal of Materials Research
    • /
    • v.23 no.9
    • /
    • pp.525-530
    • /
    • 2013
  • This study investigated the continuous cooling transformation, microstructure, and mechanical properties of highstrength low-alloy steels containing B and Cu. Continuous cooling transformation diagrams under non-deformed and deformed conditions were constructed by means of dilatometry, metallographic methods, and hardness data. Based on the continuous cooling transformation behaviors, six kinds of steel specimens with different B and Cu contents were fabricated by a thermomechanical control process comprising controlled rolling and accelerated cooling. Then, tensile and Charpy impact tests were conducted to examine the correlation of the microstructure with mechanical properties. Deformation in the austenite region promoted the formation of quasi-polygonal ferrite and granular bainite with a significant increase in transformation start temperatures. The mechanical test results indicate that the B-added steel specimens had higher strength and lower upper-shelf energy than the B-free steel specimens without deterioration in low-temperature toughness because their microstructures were mostly composed of lower bainite and lath martensite with a small amount of degenerate upper bainite. On the other hand, the increase of Cu content from 0.5 wt.% to 1.5 wt.% noticeably increased yield and tensile strengths by 100 MPa without loss of ductility, which may be attributed to the enhanced solid solution hardening and precipitation hardening resulting from veryfine Cu precipitates formed during accelerated cooling.

Microstructure and Mechanical Properties of High Strength and Stretch-Flangeability Hot-Rolled Steels (고강도-신장플랜지성 열연강의 미세조직 및 기계적 성질)

  • Chun, Eun-Joon;Lee, Ju-Seung;Do, Hyeong-Hyeop;Kim, Seong-Ju;Park, Yong-Ho;Kang, Nam-Hyun
    • Korean Journal of Materials Research
    • /
    • v.22 no.1
    • /
    • pp.16-23
    • /
    • 2012
  • Research into the development of high strength (1 GPa) and superior formability, such as total elongation (10%), and stretch-flangeability (50%) in hot-rolled steel was conducted with a thermomechanically controlled hot-rolling process. To improve the overall mechanical properties simultaneously, low-carbon steel using precipitation hardening of Ti-Nb-V multimicroalloying elements was employed. And, ideal microstructural characteristics for the realization of balanced mechanical properties were determined using SEM, EBSD, and TEM analyses. The developed steel, 0.06C-2.0Mn-0.5Cr-0.2(Ti + Nb + V), consisted of ferrite as the matrix phase and second phase of granular bainite with fine carbides (20-50 nm) in both phases. The significant factor of the microstructural characteristics that affect stretch-flangeability was found to be the microstructural homogeneity. The microstructural homogeneity, manifest in such characteristics as low localization of plastic strain and internally stored energy, was identified by grain average misorientation method, analyzed by electron backscattered diffraction (EBSD) and hardness deviation between the phases. In summar, a hot-rolled steel having a composition 0.06C-2.0Mn-0.5Cr-0.2(Ti + Nb + V) demonstrated a tensile strength of 998 MPa, a total elongation of 19%, and a hole expansion ratio of 65%. The most important factors to satisfy the mechanical property were the presence of fine carbides and the microstructural homogeneity, which provided low hardness deviation between the phases.

Automatic Control for Strip Shape At Stainless Cold Rolling Process (스테인레스 냉간 압연 강판의 폭 방향 형상의 자동 제어)

  • 허윤기
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.180-180
    • /
    • 2000
  • The shape of cold strip for the stainless process has been become issue in quality recently, and hence POSCO (Pohang Iron & Steel Co., Ltd) developed an automatic control system for strip shape in the sendzimir mill. The strip shape is measured by an outward measuring roll and is controlled by As_U roll and first intermediate roll. As_U roll consists of 8 saddles, which are controlled vertically. The fist intermediate rolls, which are controlled horizontally, consist of two pairs of rolls up and down. A developed shape control system is applied to real plant by using fuzzy logic and neural network method to control actuators; As_U roll and first intermediate roll. This system composes mainly of three parts as a real-time system, input to output conditioner board, and man-machine interface. The actual shape is recognized by neural network and converted into symmetric shape. The fuzzy controller, based on the shape from neural network and sensor, controls positions of the As_U roll and first intermediate roll. This paper verifies the shape controller performance. The experiments are made on line for the sendzimir mill. The shape control performance shows very efficient for the target tracking, shape symmetry, and fluctuation of shape.

  • PDF

A Study on Structural Characteristics of SM490A TMC Thick Steel Plates (SM490A TMC 후판강재의 소재 및 용접부 특성에 관한 연구)

  • Kim, Jong Rak;Park, Yang Hee
    • Journal of Korean Society of Steel Construction
    • /
    • v.15 no.3
    • /
    • pp.331-339
    • /
    • 2003
  • The study discussed in this paper investigated the material characteristics for the Thermo-Mechanical Control Process(TMCP) plates, which are controlled by several factors such as rolling, cold-stripping, cooling rate, and fixed carbon quantity. The suitability of thick TMCP steel plates as structural steel was also estimated through several experiments and with the us of a statistical method to analyze mill certificate sheets provided by the manufacturer. The results of this study are as follows: the TMCP steel plates showed stable values of the composition parameter ($P_cm$) and the carbon equivalents ($C_eq$ ) with satisfied yield strength, ultimate strength, and low-yield ratio.

Effects of Alloying Elements and the Cooling Condition on the Microstructure, Tensile Properties, and Charpy Impact Properties of High-Strength Bainitic Steels (베이나이트계 고강도강의 합금원소와 냉각조건이 미세조직, 인장성질, 충격성질에 미치는 영향)

  • Sung, Hyo Kyung;Shin, Sang Yong;Hwang, Byoungchul;Lee, Chang Gil;Kim, Nack J.;Lee, Sunghak
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.9
    • /
    • pp.798-806
    • /
    • 2010
  • The effects of alloying elements and the cooling condition on the microstructure, tensile properties, and Charpy impact properties of high-strength bainitic steel plates fabricated by a controlled rolling process were investigated in the present study. Eight kinds of steel plates were fabricated by varying C, Cr, and Nb additions under two different cooling rates, and their microstructures and tensile and Charpy impact properties were evaluated. The microstructures present in the steels increased in the order of granular bainite, acicular ferrite, bainitic ferrite, and martensite as the carbon equivalent or cooling rate increased, which resulted in a decrease in the ductility and Charpy absorbed energy. The steels containing a considerable amount of bainitic ferrite or martensite showed very high strengths, together with good ductility and Charpy absorbed energy. In order to achieve the best combination of strength, ductility, and Charpy absorbed energy, granular bainite and acicular ferrite were properly included in the high-strength bainitic steels by controlling the carbon equivalent and cooling rate, while about 50 vol.% of bainitic ferrite or martensite was maintained to maintain the high strength.

The characteristics of Near-thrshold fatigue crack propagation for welding zone in TMCP high strength steels (TMCP 고장력강 용접부의 하한계 피로균열진전 특성평가)

  • 이택순;오대석;이휘원
    • Journal of Ocean Engineering and Technology
    • /
    • v.11 no.3
    • /
    • pp.39-47
    • /
    • 1997
  • Recently developed TMCP steels, which were manufactured by controlled rolling followed by accelerated cooling process, were examined to study their characteristics and weldability. Accelerated cooling type TMCP steel's hardness test result exhibited high value on weld zone. On the contrary, base metal and HAZ exhibited comparatively the similar value. On this experiment result Softening of HAZ is not occurred. in the-heat affected zone, grain size repression be caused by chemical composition properties which a small quantity Al-Ti-B-N. Changing stress ratio near-threshold fatigue crack propagation experiments were carried out. According to this result, crack propagation velocity of the HAZ exhibited slower than the base metal and near-threshold value had increased at the HAZ. Finally accelerated cooling type TMCP steels were exhibited excellent mechanical properties in both strength and toughness.

  • PDF

The formability of high strength steel plate applied TRB for stamping (스탬핑용 고강도강 TRB 판재의 성형 특성)

  • Park, Hyun-kyung;Jeong, Ji-Won;Lee, Gyung-Min
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.5
    • /
    • pp.184-189
    • /
    • 2018
  • Recently, research on lightweight automobiles is increasing continuously to respond to the high safety standards and environmental regulations. The application of high strength steel is one of the effective methods for developing lightweight car bodies. A TWB (Tailor Welded Blank) is major method that allows partial high strength with light weighting using a multi-thickness and multi-material welded blank. On the other hand, additional welding process is required to prepare the blank and quality control for the welding process also required. To secure this point, the TRB (Tailor Rolled Blank) method was suggested. In the TRB method, the thickness of sheet is controlled by the rolling presses and the production efficiency is much higher than welding in TWB methods. In this study, the formability of high strength TRB steel plate was analyzed to examine the rolling effect of the blank. The formability of the specimen was tested using 0.8 and 1 mm thick steel sheets for the TRB plate. The strain was analyzed by the digital image sensing of grid markings on the specimen and the forming limit diagram was calculated. An Erichsen test for the 0.8 and 1 mm thick TRB specimens was carried out and the formability was investigated by comparing with FE analysis.

Effect of Strain Aging on the Tensile Properties of an API X70 Linepipe Steel (API X70 라인파이프강의 인장 특성에 미치는 변형 시효의 영향)

  • Lee, Seung-Wan;Lee, Sang-In;Hwang, Byoungchul
    • Korean Journal of Materials Research
    • /
    • v.27 no.10
    • /
    • pp.524-529
    • /
    • 2017
  • The effect of strain aging on the tensile properties of API X70 linepipe steel was investigated in this study. The API X70 linepipe steel was fabricated by controlled rolling and accelerated cooling processes, and the microstructure was analyzed using optical and scanning electron microscopes and electron backscatter diffraction. Strain aging tests consisting of 1 % pre-strain and thermal aging at $200^{\circ}C$ and $250^{\circ}C$ were conducted to simulate U-forming, O-forming, Expansion(UOE) pipe forming and anti-corrosion coating processes. The API X70 linepipe steel was composed of polygonal ferrite, acicular ferrite, granular bainite, and bainitic ferrite whose volume fraction was dependent on the chemical composition and process conditions. As the thermal aging temperature increased, the steel specimens showed more clearly discontinuous type yielding behavior in the tensile stress-strain curve due to the formation of a Cottrell atmosphere. After pre-strain and thermal aging, the yield and tensile strengths increased and the yield-to-tensile strength ratio decreased because yielding and aging behaviors significantly affected work hardening. On the other hand, uniform and total elongations decreased after pre-strain and thermal aging since dislocation gliding was restricted by increased dislocation density after a 1 % pre-strain.