• 제목/요약/키워드: controlled rheology

검색결과 52건 처리시간 0.024초

Rheology and pipeline transportation of dense fly ash-water slurry

  • Usui, Hiromoto;Li, Lei;Suzuki, Hiroshi
    • Korea-Australia Rheology Journal
    • /
    • 제13권1호
    • /
    • pp.47-54
    • /
    • 2001
  • Prediction of the maximum packing volume fraction with non-spherical particles has been one of the important problems in powder technology. The sphericity of fly ash particles depending on the particle diameter was measured by means of a CCD image processing instrument. An algorithm to predict the maximum packing volume fraction with non-spherical particles is proposed. The maximum packing volume fraction is used to predict the slurry viscosity under well dispersed conditions. For this purpose, Simha's cell model is applied for concentrated slurry with wide particle size distribution. Also, Usui's model developed for aggregative slurries is applied to predict the non-Newtonian viscosity of dense fly ash - water slurry. It is certified that the maximum packing volume fraction for non-spherical particles can be successfully used to predict slurry viscosity. The pressure drop in a pipe flow is predicted by using the non-Newtonian viscosity of dense fly ash-water slurry obtained by the present model. The predicted relationship between pressure drop and flow rate results in a good agreement with the experimented data obtained for a test rig with 50 mm inner diameter tube. Base on the design procedure proposed in this study, a feasibility study of fly ash hydraulic transportation system from a coal-fired power station to a controlled deposit site is carried out to give a future prospect of inexpensive fly ash transportation technology.

  • PDF

전기유변유체댐퍼의 유전자알고리즘에 의해 설계된 퍼지 제어 (Fuzzy control designed GA of a electro-rheology fluid damper)

  • 배종인;박명관;주동우
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1997년도 한국자동제어학술회의논문집; 한국전력공사 서울연수원; 17-18 Oct. 1997
    • /
    • pp.438-441
    • /
    • 1997
  • This paper studies a semi-active suspension with ER damper controlled Fuzzy Net Controller designed GA(Genetic Algorithm). Apparent viscosity of ERF(Electro-Rheological Fluid) can be changed rapidly by applying electric field. Semi-active suspension for ground vehicles are expected to improve ride quality with less vibration. This paper deals with a two-degree -of-freedom suspension using the ER damper for a quarter vehicle system. In this paper, the GA is applied for generating Fuzzy Net Controllers. The GA designs the optimal structure and performance of Fuzzy Net Controller having hybrid structure. Computer simulation results show that the semi-active suspension with ER damper has good performances of ride quality.

  • PDF

Flow behavior of high internal phase emulsions and preparation to microcellular foam

  • Lee, Seong Jae
    • Korea-Australia Rheology Journal
    • /
    • 제16권3호
    • /
    • pp.153-160
    • /
    • 2004
  • Open microcellular foams having small-sized cell and good mechanical properties are desirable for many practical applications. As an effort to reduce the cell size, the microcellular foams combining viscosity improvers into the conventional formulation of styrene and water system were prepared via high internal phase emulsion polymerization. Since the material properties of foam are closely related to the solution properties of emulsion state before polymerization, the flow behavior of emulsions was investigated using a controlled stress rheometer. The yield stress and the storage modulus increased as viscosity improver concentration and agitation speed increased, due to the reduced cell size reflecting both a competition between the continuous phase viscosity and the viscosity ratio and an increase of shear force. Appreciable tendency was found between the rheological data of emulsions and the cell sizes of polymerized foams. Cell size reduction with the concentration of viscosity improver could be explained by the relation between capillary number and viscosity ratio. A correlative study for the cell size reduction with agitation speed was also attempted and the result was in a good accordance with the hydrodynamic theory.

Experimental studies on rheological properties of smart dynamic concrete

  • Bauchkara, Sunil D.;Chore, H.S.
    • Advances in concrete construction
    • /
    • 제5권3호
    • /
    • pp.183-199
    • /
    • 2017
  • This paper reports an experimental study into the rheological behaviour of Smart Dynamic Concrete (SDC). The investigation is aimed at quantifying the effect of the varying amount of mineral admixtures on the rheology, setting time and compressive strength of SDC containing natural sand and crushed sand. Ordinary Portland cement (OPC) in conjunction with the mineral admixtures was used in different replacement ratio keeping the mix paste volume (35%) and water binder ratio (0.4) constant at controlled laboratory atmospheric temperature ($33^{\circ}C$ to $35^{\circ}C$). The results show that the properties and amount of fine aggregate have a strong influence on the admixture demand for similar initial workability, i.e., flow. The large amounts of fines and lower value of fineness modulus (FM) of natural sand primarily increases the yield stress of the SDC. The mineral admixtures at various replacement ratios strongly contribute to the yield stress and plastic viscosity of SDC due to inter particle friction and cohesion.

Electrorheological characteristics of poly(o-ethoxy)aniline nanocomposite

  • Sung Jun Hee;Choi Hyoung Jin
    • Korea-Australia Rheology Journal
    • /
    • 제16권4호
    • /
    • pp.193-199
    • /
    • 2004
  • Poly(o-ethoxy)aniline (PEOA)/organoclay nanocomposite was prepared via a solvent intercalation using chloroform as a cosolvent with organically modified montmorillonite (OMMT) clay. The PEOA initially synthesized from a chemical oxidation polymerization in an acidic condition at pH = 1 was intercalated into interlayers of the clay with $25\;wt{\%}$ clay content. Electrical conductivity of the PEOA/OMMT nano­composite was found to be controlled via the intercalating process. The synthesized PEOA/OMMT nano­composite was characterized via an XRD and a TGA, and then adopted as an electrorheological (ER) material. The PEOA/OMMT synthesized with controllable electrical conductivity without a dedoping pro­cess was found to show typical ER characteristics possessing a yield stress from both steady state and dynamic measurements under an applied electric field.

고로슬래그와 폴리카르본산계 유기 혼화제를 첨가한 Belite-rich Cement 모르타르 유동특성 (Rheology Properties of Belite-rich Cement Mortar Added Blastfurnace Slag and Polycarbonate-based Superplasticizer)

  • 송종택;송종택;조현태;황인수;박춘근
    • 한국세라믹학회지
    • /
    • 제37권2호
    • /
    • pp.145-151
    • /
    • 2000
  • In order to investigate the rheological properties of belite-rich cement(BRC) added polycarbonate-based superplasticizer and blastfurnace slags which have different blaines at 4500, 6000 and 8000$\textrm{cm}^2$/g, the change of minislumps and mortar slumps are measured with time. The rheological properties improve as specific surface area of added slag decreases or amount of polycarbonate-based superplasticizer increases. The slump loss can be controlled effectively by the steric hinderance effect of polycarbonate-based superplasticizer. According to the results, when mix proportion of the mortar is 1.5% mass content of superplasticizer and 30% mass addition of blastfurnace slag which blaine is 4500$\textrm{cm}^2$/g, the best mortar slump can be achieved without any significant segregation of materials.

  • PDF

미끄럼 방지 바닥 도료용 폴리프로필렌 수지의 화학적 분쇄에 관한 연구 (A Study on the Chemical Powdering Process of Polypropylene Resin for Anti-slip Floor Paint)

  • 김대인;정화영;황석환;조익성;윤경준;조백수;김광국;윤강재
    • 한국안전학회지
    • /
    • 제27권6호
    • /
    • pp.78-83
    • /
    • 2012
  • In this study, some experimental results of the peroxide-degradation process of polypropylene(PP) in a co-rotating twin-screw extruder to produce controlled rheology polypropylene(CRPP) are presented. The peroxide was dicumyl peroxide(DCP) and the concentration of DCP was in the range 0-0.3 wt%. It was found that the rheological properties of PP change significantly during reactive extrusion. Melt flow index(MFI) increased with DCP concentration. Intrinsic viscosity decreases with increasing DCP concentration. From dynamic rheological data, number average molecular weight(Mn), weight average molecular weight(Mn) and molecular weight distribution(MWD) were calculated. Results indicated that Mw decreases and MWD becomes narrower with increasing peroxide concentration. Especially, particle size distribution of CRPP decreases with increasing DCP concentration by chemical powdering process, and anti-slip floor paint, CRPP(DCP 0.2 wt%) powder by 10phr was friction coefficient 2.15 ${\mu}$, abrasion resistance 511.18%.

Experiments on granular flow in a hexagonal silo: a design that minimizes dynamic stresses

  • Hernandez-Cordero, Juan;Zenit, R.;Geffroy, E.;Mena, B.;Huilgol, R.R.
    • Korea-Australia Rheology Journal
    • /
    • 제12권1호
    • /
    • pp.55-67
    • /
    • 2000
  • In this paper, an experimental study of the rheological behavior of granular flow in a new type of storage silo is presented. The main characteristic of the new design is a hexagonal shape chosen with the objective of minimizing the stresses applied to the stored grains, and to reduce grain damage during the filling and emptying processes. Measurements of stress distribution and flow patterns are shown for a variety of granular materials. Because of the design of the silo, the granular material adopts its natural rest angle at all times eliminating collisional stresses and impacts between grains. A homogeneous, low friction flow is naturally achieved which provides a controlled stress distribution throughout the silo during filling and emptying. Secondary dynamic stresses, which are responsible for wall failure in conventional silos of the vertical type, are completely eliminated. A comparison between the two geometries is presented with data obtained for these silos and a number of granular materials. The discharge pattern inhibits powder formation in the silo and the filling system virtually eliminates unwanted material packing. Finally, notwithstanding the rheological advantages of this new design, the hexagonal cells that constitute the silo have many other advantages, such as the possible use of solar energy to control the humidity inside them. The cell type design allows for versatile storage capabilities and the elevation above the ground provides unlimited transportation facilities during emptying.

  • PDF

Latex 입경과 원지 평량 및 칼라농도가 도공지의 인쇄품질에 미치는 영향 (Effect of Latex Particle Size, Base Paper Grammage and Coating Color Concentration on Printing Quality of Coated Paper)

  • 이용규;유성종;조병욱;김용식;남병기;최상민
    • 펄프종이기술
    • /
    • 제39권4호
    • /
    • pp.29-37
    • /
    • 2007
  • The effects of latex particle size, basis weight of base paper and coating color concentration on the printing quality of coated paper were investigated. Coating colors were prepared with five types of latexes having different particle sizes. Coated papers were produced with high solid coating colors and with low solid coating colors in a industrial coater, respectively. In high solid coating colors, rheology modifier was used and GCC content was high. It was concluded that, in order to control binder migration and hence print mottle, latex particle sizes shall be controlled as well as formation, sizing degree and roughness of basis paper.

Dynamic response of heat and mass transfer in blood flow through stenosed bifurcated arteries

  • Charkravarty S.;Sen S.
    • Korea-Australia Rheology Journal
    • /
    • 제17권2호
    • /
    • pp.47-62
    • /
    • 2005
  • The present study deals with a mathematical model describing the dynamic response of heat and mass transfer in blood flow through bifurcated arteries under stenotic condition. The geometry of the bifurcated arterial segment possessing constrictions in both the parent and the daughter arterial lumen frequently appearing in the diseased arteries causing malfunction of the cardiovascular system, is formulated mathematically with the introduction of the suitable curvatures at the lateral junction and the flow divider. The blood flowing through the artery is treated to be Newtonian. The nonlinear unsteady flow phenomena is governed by the Navier-Stokes equations while those of heat and mass transfer are controlled by the heat conduction and the convection-diffusion equations respectively. All these equations together with the appropriate boundary conditions describing the present biomechanical problem following the radial coordinate transformation are solved numerically by adopting finite difference technique. The respective profiles of the flow field, the temperature and the concentration and their distributions as well are obtained. The influences of the stenosis, the arterial wall motion and the unsteady behaviour of the system in terms of the heat and mass transfer on the blood stream in the entire arterial segment are high­lighted through several plots presented at the end of the paper in order to illustrate the applicability of the present model under study.