• Title/Summary/Keyword: controlled drug release

Search Result 261, Processing Time 0.038 seconds

Swelling and Drug Release Characteristics of Poly (ethylene oxide)-Poly (methacrylic acid) Interpenetrating Networks (폴리에틸렌 옥사이드-폴리메타크릴산 IPN 공중합체의 팽윤 및 약물 방출특성)

  • Lee, Seung-Jin
    • Journal of Pharmaceutical Investigation
    • /
    • v.21 no.3
    • /
    • pp.149-153
    • /
    • 1991
  • Polyethylene oxide (PEO)-polymethacrylic acid (PMAA) interpenetrating polymer networks (IPN) were synthesized via radical polymerization of PMAA and simultaneous crosslinking of PEO using triisocyanate. The equilibrium swelling of PEO-PMAA IPN was determined at different pHs. The swelling of PEO-PMAA IPN, ranged from 20% to 90%, was more sensitive than that of homo polymer PMAA gel This is probably due to protonation and deprotonation of the PMAA network and interpolymer complex formation between PEO and PMAA. Several model drugs were loaded into the IPN matrices and the release mechanisms were investigated. The release of nonionizable drugs such as ftorafur and prednisolone was controlled by swelling of the matrices. However, he release of propranolol, positively charged drug, was more affected by the ionic interaction between the drug and PMAA newtork, and the interpolymer complexation.

  • PDF

Development of Controlled Release Oral Drug Delivery System by Membrane-Coating Method-III- Preparation of Theophylline Tablets and Pharmacokinetic Evaluation in Man- (피막법에 의한 경구투여용 제어방출제제의 개발-III-테오필린함유 제어방출제제의 제조 및 사람의 타액중 농도로부터의 평가-)

  • Shim, Chang-Koo;Kim, Chong-Kook;Lee, Min-Hwa;Kim, Shin-Keun
    • Journal of Pharmaceutical Investigation
    • /
    • v.22 no.3
    • /
    • pp.205-210
    • /
    • 1992
  • In order to develop a controlled-release oral drug delivery system (DDS) of theophylline (TP), microporous membrane-coated tablets were prepared and evaluated in vitro and in vivo. Rapidly water-soluble core tablets of TP (300 mg) were prepared by wet granulation and compression technique, Then the core tablets were spray-coated with polyvinylchloride (PVC) in which micronized sucrose particles were dispersed. Effect of formula compositions of coating suspensions on the pharmaceutical characteristics such as membrane strength and dissolution was investigated in vitro. The membranes remained unbroken in pH 1.2 buffer at $37^{\circ}C$ at least for 2 hours after the disintergration test. TP was released from the coated-released tablets at a zero-order rate over 8 hours. The release at pH 1.2 and 4.0 was similar in rate but a little more rapid than that at pH 6.8. The coated tablets were administered to three healthy male volunteers and their saliva profiles of TP were compared with those from the commercial sustained release TP tablets such as Slobid and Asconthin. Saliva TP concentrations from the coated tablets were successfully sustained over 48 hours after the dosing and were comparable to those of the commercial sustained-release tablets. The membrane-coating technique is very simple and does not need any sophisticated equipments. In this respect, the membrane-coated tablets may be superior to the commercial sustained-release tablets and this technique is worth adopting by the pharmaceutical industries.

  • PDF

Preparation and Evaluation of Antibacterial Transdermal Device using Chitosan Matrices (키토산 매트릭스를 이용한 향균제 경피흡수제형의 제조와 평가)

  • Kim Sun Il;Na Jae Woon
    • Journal of the Korean Chemical Society
    • /
    • v.37 no.5
    • /
    • pp.527-536
    • /
    • 1993
  • The characteristics of the controlled drug release were studied for biodegradable transdermal drug delivery system. A biodegradable polymeric matrix was prepared from chitosan, silver sulfadiazine, and glycerine. The release behavior of silver sulfadiazine from chitosan matrix was consistent with the Higuchi's diffusion controlled model. The release time was delayed by increasing the content of silver sulfadiazine and thickness of the matrix, whereas decreased as glycerine concentration increased. The apparent constant (K) of release rate was proportional to the content of drug or glycerine and the thickness of chitosan matrix. These results indicated that chitosan matrix shows some potential as a drug delivery system for transdermal therapeutic application.

  • PDF

Experimental Study on Sustained-release 5-Fluorouracil Implantation in Canine Peritoneum and Para-aortic Abdominalis

  • Wei, Guo;Nie, Ming-Ming;Shen, Xiao-Jun;Xue, Xu-Chao;Ma, Li-Ye;Du, Cheng-Hui;Wang, Shi-Liang;Bi, Jian-Wei
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.1
    • /
    • pp.407-411
    • /
    • 2014
  • Objective: To observe local and systemic toxicity after sustained-release 5-fluorouracil (5-Fu) implantation in canine peritoneum and para-aortic abdominalis and the changes of drug concentration in the local implanted tissue with time. Methods: 300 mg sustained-release 5-Fu was implanted into canine peritoneum and para-aorta abdominalis. Samples were taken 3, 5, 7 and 10 days after implantation for assessment of changes and systemic reactions. High performance liquid chromatography was applied to detect the drug concentrations of peritoneal tissue at different distances from the implanted site, lymphatic tissue of para-aortic abdominalis, peripheral blood and portal venous blood. Results: 10 days after implantation, the drug concentrations in the peritoneum, lymphatic tissue and portal vein remained relatively high within 5 cm of the implanted site. There appeared inflammatory reaction in the local implanted tissue, but no visible pathological changes such as cell degeneration and necrosis, and systemic reaction like anorexia, nausea, vomiting and fever. Conclusions: Sustained-release 5-Fu implantation in canine peritoneum and para-aortic abdominalis can maintain a relatively high tumour-inhibiting concentration for a longer time in the local implanted area and portal vein, and has mild local and systemic reactions. Besides, it is safe and effective to prevent or treat recurrence of gastrointestinal tumours and liver metastasis.

Reduced Burst Release from ePTFE Grafts: A New Coating Method for Controlled Drug Release

  • Nam, Hye-Yeong;Kim, Dae-Joong;Lim, Hyun-Jung;Lee, Byung-Ha;Baek, In-Su;Park, Sang-Hun;Park, Jong-Sang
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.2
    • /
    • pp.422-426
    • /
    • 2008
  • Hemodialysis graft coated with paclitaxel prevents stenosis; however, large initial burst release of paclitaxel causes many negative effects such as drug toxicity and inefficient drug loss. Therefore we developed and tested a novel coating method, double dipping, to provide controlled and sustained release of paclitaxel locally. Expanded polytetrafluoroethylene (ePTFE) grafts were dipped twice into a solution of several different paclitaxel concentrations. In vitro release tests of the double dipping method showed that early burst release could be somewhat retarded and followed by sustained release for a long time. We observed the effect of paclitaxel coating by double dipping in porcine model of arterio-venous (AV) grafts between the common carotid artery and the external jugular vein. 12 weeks after constructing AV grafts, cross sections of the graft venous anastomosis were obtained and analyzed. Paclitaxel coated ePTFE grafts by double dipping were observed to prevent neointimal hyperplasia and therefore reduced stenosis of the arteriovenous hemodialysis grafts, especially at the graft venous anastomosis sites. Our results demonstrate that second dipping of ePTFE graft, which was already coated once with paclitaxel, washes off the drug on a surface of the graft and affects the ratio of paclitaxel on the surface to that of the inner space, possibly by diffusion: thus the early burst of drug can be somewhat reduced.

Preparation of Double Layered Nanosphere Using Dextran and Poly(L-lactide- co-glycolide) (덱스트란과 락타이드글리콜라이드 공중합체를 이용한 이중층 나노미립구 제조)

  • Hong Keum Duck;Ahn Yong San;Go Jong Tae;Kim Moon Suk;Yuk Soon Hong;Shin Hyung Sik;Rhee John M;Khang Gilson;Lee Hai Bang
    • Polymer(Korea)
    • /
    • v.29 no.3
    • /
    • pp.260-265
    • /
    • 2005
  • The initial burst of drug release is an important role in the controlled delivery of drug having hish toxicity and narrow therapeutic ranges. Nanosphere composed of monolayer could not achieve precisely controlled drug release because of the initial burst of drug on surface. In this study, double layered nanosphere was prepared for sustained drug delivery without initial burst. Double layered nanosphere composed of dextran and PLGA was fabricated by using conventional W/O/W double emulsion method. To control surface tension on the outer layer of nanospheres, PVA was used as a surfactant. Release behavior of dextran as model drug was observed as the $3{\times}1$mm wafers formed by compression mould in the deionized water for 7 days. Double layered nanosphere has sustained release behavior, in contast to single layered nanospheres. such as mechanical mixture and dextran nanospheres. Especially, nanosphere containing PVA $0.2\%$ has shown nearly the zero-order release profile. As a result of this study, double layered nanospheres has more sustained release profile of drug without the initial burst and the release behavior of dexoan on tile double layered nanospheres was controlled by the contents of PVA as a surfactant.

Controlled Release of Tamsulosin from Enteric Coated Sustained-Release Matrices with Aqueous Microchannels (수성미세채널을 형성하는 서방성 매트릭스 장용정을 이용한 탐스로신의 방출제어)

  • Lee, Ki-Bong;Choi, Sung-Up;Jeon, Hong-Ryeol;Lee, Bong-Sang;Kim, Hyun-Il;Lee, Jae-Hwi;Choi, Young-Wook
    • Journal of Pharmaceutical Investigation
    • /
    • v.34 no.6
    • /
    • pp.471-475
    • /
    • 2004
  • Tamsulosin has been frequently used for the treatment of benign prostatic hyperplasia. To avoid dose-dependent side effects of tamsulosin upon oral administration, the development of sustained-release delivery system is required, that can maintain therapeutic drug levels for a longer period of time. The aim of this study was therefore to formulate sustained-release tamsulosin matrix tablets and assess their formulation variables. We designed enteric coated sustained-release tamsulosin matrices to fulfill above statement. Aqueous microchannels in the enteric film need to be formed in order to obtain tamsulosin release even in an acidic environment such as gastric region. In the sustained-release tamsulosin matrix, low viscosity hydroxypropylmethylcellulose was used as a rate controller. Povidone K30 was also added to the matrices to facilitate water uptake so that a decrease in the release rate of tamsulosin as time elapses was prevented, possibly leading to pseudo zero-order release of the drug. The matrices were enteric-coated with hydroxypropylmethylcellulose phthalate (HPMCP), along with povidone K30 as an aqueous microchannel former. With the aqueous microchannels formed within the enteric film, tamsulosin could be released in an acidic condition. The release of tamsulosin decreased with increasing thickness of HPMCP membrane while the release rates of tamsulosin from those having different HPMCP thickness in pH 7.2 aqueous media were not considerably different, indicating that the enteric film was promptly dissolved at pH 7.2. These results clearly suggest that the sustained-release oral delivery system for tamsulosin could be designed with satisfying drug release profile approved by the KFDA.

Effects of Molecular Weights on the Physico-pharmaceutical Properties of Poly-L-glutamic acid-cytarabine Conjugates

  • Kim, Chong-Kook;Kwon, Kyoung-Ae;Jeong, Eun-Ju;Lee, Myung-Gull
    • Archives of Pharmacal Research
    • /
    • v.12 no.2
    • /
    • pp.88-93
    • /
    • 1989
  • In order to obtain some informations about the effect of molecular weight on the release rate of drug from drug carrier, two types of poly-L-glutamic acid (PLGA)-cytarabine (ara-C) conjugates, PLGA-ara-C:I and PLGA-ara-C:II, were synthesized using two types of PLGA having different average molecular weight, 43,000 and 77,800, respectively. The PLGA-ara-C conjugates were synthesized by mixed anhydride method and found to be covalently linked. Both types of conjugates charged negatively at biological pH. The pH-dependent release rate of ara-C was observed in both cases, and the release rate was accelerated in basic, acidic conditions (the k values were 0.015 $day^{-1}$ at pH 7.0, 0.024 $day^{-1}$ at pH 5.0, and 0.059 $day^{-1}$ at pH 9.0 in the case of PLGA-ara-C:I) and in the presence of pretense. The time required for the release of 16.5% of ara-C from PLGA-ara-C:I were 8 hr and 144 hr in the presence and absence of protease, respectively. Although both types of conjugates showed similar drug substitution ratio, they showed different release rates. Between the two types of conjugates, PLGA-ara-C:II showed the faster release rate (0.030 vs 0.042 $day^{-1}$ in pH 7.4 phosphate buffer solution at $37^{\circ}C$) and the smaller activation energy for the release of drug (12.5 vs 7.7 Kcal/mol) than PLGA-ara-C:I. The characteristic effect of molecular weight on the release rates of PLGA-ara-C conjugates suggests that the drug release rate might be effectively controlled over a prolonged period of time by the combined use of the different types of PLGA-ara-C conjugates having different molecular weights.

  • PDF

Controlled Release Properties of Ketoprofen from Methacrylate Polymer Gels (메타크릴레이트 폴리머로 제조한 겔 제제로부터 케토프로펜의 제어 방출특성)

  • Han, Kun;Park, Jeong-Sook;Kim, Nak-Seo;Chung, Youn-Bok;Cha, Cheol-Hee
    • Journal of Pharmaceutical Investigation
    • /
    • v.21 no.1
    • /
    • pp.1-10
    • /
    • 1991
  • Hydrogels containing ketoprofen were prepared by adding NaOH or $Ca(OH)_2$ solution to Eudragit L, S and Eudispert hv at various concentration. And xerogels were prepared by drying hydrogels. On the other hand, organogels containing ketoprofen were prepared by mixing Eudragit L or S and propylene glycol. Effects of polymer content and base on drug release were investigated using KP V dissolution method. The release rate of ketoprofen from Eudragit L & S hydrogel decreased with increasing in polymer content. And the drug release rate from cal. hydroxide based gels were more decreased than that from sod. hydroxide based gels. At pH 7.2 dissolution medium, e release of ketoprofen from Edispert hv hydrogel followed apparent zero order kinetics. The release of ketoprofen from xerogel involved in simultaneous absorption of water and desorption of ketoprofen via a pH-dependant swelling controlled mechanism. The release of ketoprofen from Eudragit S organogels followed apparent zero order kinetics, providing strong evidence for a surface erosion mechanism.

  • PDF

Dual Responsive Pectin Hydrogels and Their Silver Nanocomposites: Swelling Studies, Controlled Drug Delivery and Antimicrobial Applications

  • Reddy, P. Rama Subba;Eswaramma, S.;Krishna Rao, K.S.V.;Lee, Yong Ill
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.8
    • /
    • pp.2391-2399
    • /
    • 2014
  • Novel dual responsive pectin hydrogels composed from poly(acrylamidoglycolic acid-co-vinylcaprolactam)/Pectin (PAV-PC) and also PAV-PC hydrogels are used as templates for the production of silver nanoparticles. 5-Fluorouracil is an anticancer drug and has been loaded in situ into PAV-PC hydrogels. Structure and morphology characterization of PAV-PC hydrogels were investigated by fourier transform infrared spectroscopy, differential scanning calorimetry, thermo gravimetric analysis, X-ray diffraction studies, scanning electron microscopy and transmission electron microscopy. The results revealed a molecular level dispersion of the drug in PAV-PC hydrogels. In vitro release of 5-fluorouracil from the PAV-PC hydrogels has been carried out in GIT fluids as well as in various temperatures. 5-Fluorouracil released from PAV-PC hydrogels was 50% at pH 1.2, and 85% at pH 7.4 within 24 h. The release profile was characterized with PAV-PC hydrogels and initial burst effect was significantly reduced in two buffer media (1.2 and 7.4), followed by a continuous and controlled release phase, the drug release mechanism from polymer was due to Fickian diffusion. In situ fabrication of silver nanoparticles inside the hydrogel network via the reduction of sodium borohydrate by PAV-PC chains led to hydrogel nanocomposites. The diameter of the nanocomposites was about 50-100 nm, suitable for uptake within the gastrointestinal tract due to their nanosize range and mucoadhesive properties. These nanocomposite PAV-PC hydrogels showed strong antimicrobial activity towards Bacillus subtilis (G+ve) and Escherichia coli (G-ve).