• Title/Summary/Keyword: controlled area network

Search Result 94, Processing Time 0.034 seconds

The Frequency Adaptive antenna Matching Network Design for Improving Wireless LAN Performance (무선랜 송수신 특성 개선을 위한 주파수 적응형 안테나 정합 회로 구조 설계)

  • Park, Kyoung-Jin;Ra, Keuk-Hwan
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.49 no.4
    • /
    • pp.41-46
    • /
    • 2012
  • This paper suggested that the frequency adaptive antenna matching network design between AP and WLAN(Wireless Local Area Network) terminal for improving performance. The internet data service of the WLAN terminal is communicated through the AP and AP broadcasts the beacon signal including the assigned frequency channel. at that time the antenna matching network path is controlled beacon information after the WLAN terminal searching and synchronization a beacon information. and then the WLAN terminal communicate with AP. controlling the antenna matching network path according to channel information, The WLAN terminal is expected to improve RF output power and sensitivity performance. The VSWR(Voltage Standing Wave Ratio) performance of the designed antenna matching network is measured to about 1.1 ~ 1.2 and then it is operated by the channel information of the AP.

X-band CMOS VCO for 5 GHz Wireless LAN

  • kim, Insik;Ryu, Seonghan
    • International journal of advanced smart convergence
    • /
    • v.9 no.1
    • /
    • pp.172-176
    • /
    • 2020
  • The implementation of a low phase noise voltage controlled oscillator (VCO) is important for the signal integrity of wireless communication terminal. A low phase noise wideband VCO for a wireless local area network (WLAN) application is presented in this paper. A 6-bit coarse tune capacitor bank (capbank) and a fine tune varactor are used in the VCO to cover the target band. The simulated oscillation frequency tuning range is from 8.6 to 11.6 GHz. The proposed VCO is desgned using 65 nm CMOS technology with a high quality (Q) factor bondwire inductor. The VCO is biased with 1.8 V VDD and shows 9.7 mA current consumption. The VCO exhibits a phase noise of -122.77 and -111.14 dBc/Hz at 1 MHz offset from 8.6 and 11.6 GHz carrier frequency, respectively. The calculated figure of merit(FOM) is -189 dBC/Hz at 1 MHz offset from 8.6 GHz carrier. The simulated results show that the proposed VCO performance satisfies the required specification of WLAN standard.

Controlling Dynamic Vehicles in Driving Simulation (드라이빙 시뮬레이션에서의 동적 차량 제어)

  • Cho, Eun-Sang;Choi, Kwang-Jin;Ko, Hyeongseok
    • Journal of the Korea Computer Graphics Society
    • /
    • v.3 no.1
    • /
    • pp.37-47
    • /
    • 1997
  • This paper presents the algorithms for generating ambient traffic in driving simulation. Each ambient car is modeled as an autonomous agent that obeys the traffic rules by sensing the traffic lights, road signs, lanes, and other cars around. The algorithm is localized to the area where the car driven by the participant is currently located. Therefore the complexity of the algorithm does not depend on the size of the road network, allowing a huge environment to be simulated with no extra overhead. To avoid monotony, we produce artificial fluctuations in the behavior by employing various forms of probability distribution functions. The resulting behavior of the ambient cars is quite realistic. Experiments indicate that it is hard to tell whether an ambient car is computer-controlled or human-controlled.

  • PDF

Multi Area Power Dispatch using Black Widow Optimization Algorithm

  • Girishkumar, G.;Ganesan, S.;Jayakumar, N.;Subramanian, S.
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.10
    • /
    • pp.113-130
    • /
    • 2022
  • Sophisticated automation-based electronics world, more electrical and electronic devices are being used by people from different regions across the universe. Different manufacturers and vendors develop and market a wide variety of power generation and utilization devices under different operating parameters and conditions. People use a variety of appliances which use electrical energy as power source. These appliances or gadgets utilize the generated energy in different ratios. Night time the utilization will be less when compared with day time utilization of power. In industrial areas especially mechanical industries or Heavy machinery usage regions power utilization will be a diverse at different time intervals and it vary dynamically. This always causes a fluctuation in the grid lines because of the random and intermittent use of these apparatus while the power generating apparatus is made to operate to provide a steady output. Hence it necessitates designing and developing a method to optimize the power generated and the power utilized. Lot of methodologies has been proposed in the recent years for effective optimization and economical load dispatch. One such technique based on intelligent and evolutionary based is Black Widow Optimization BWO. To enhance the optimization level BWO is hybridized. In this research BWO based optimize the load for multi area is proposed to optimize the cost function. A three type of system was compared for economic loads of 16, 40, and 120 units. In this research work, BWO is used to improve the convergence rate and is proven statistically best in comparison to other algorithms such as HSLSO, CGBABC, SFS, ISFS. Also, BWO algorithm best optimize the cost parameter so that dynamically the load and the cost can be controlled simultaneously and hence effectively the generated power is maximum utilized at different time intervals with different load capacity in different regions of utilization.

SNMP Information based Hierarchical Routing Mechanism for Fast Handoff in Mobile IP (모바일 IP에서 Fast Handoff를 위한 SNMP 정보 기반 계층 라우팅 메커니즘)

  • 류상훈;박수현;이이섭;장한이;백두권
    • Journal of KIISE:Information Networking
    • /
    • v.31 no.2
    • /
    • pp.131-145
    • /
    • 2004
  • Mobile IP has been designed only to maintain communications as mobile devices move from a place to a place, so it does not guarantee Quality of Service (QoS). Hierarchical MIPv6 improved QoS somewhat using Mobility Anchor Point(MAP), but QoS guarantee problem still remains. QoS in mobile IP is important to provide multimedia and real-timeapplications services in a mobile environment, and QoS is closely related to handoff delay. Therefore, handoff delay problem is actively studied as a main issue in mobile IP research area to guarantee QoS. In this paper, we suggest SNMP Information-based routing that adds keyword management method to Information-based routing in an active network in order to resolve such a problem, Suggested QoS controlled method and existing handoff method, simulations are carried out with NS-2 for performance evaluation. The results of simulations show an improvement on handoff delay, and consequently the QoS improvement.

Implementation of Vehicle Management System Using Embedded System (임베디드 시스템을 이용한 차량관리 시스템의 구현)

  • Park, Soo-Bong;Yang, Seong-Soo;Park, Jong-Ran;Lee, Sang-Hun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2008.05a
    • /
    • pp.69-72
    • /
    • 2008
  • In the paper, embedded system that manage, control the status of vehicle through internet and mobile instruments are designed. The network is composed of the distributed control system using CAN communication, where communication is possible with two lines, and the bluetooth, where wireless communication is possible. We also designed the Embedded system to make up the web server only for the vehicle, made it possible to catch hold of the conditions of the vehicle and control the vehicle through internet by interfacing the destributed controller. We also made such a Web Server possible th be monitored and controlled by the mobile instruments such as PDA, mobile phones.

  • PDF

A Study on the Implementation of CAN in the Distributed System of Power Plant (발전설비 분산제어 시스템에서 CAN 구축기술 연구)

  • Kim, Uk-Heon;Hong, Seung-Ho
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.6
    • /
    • pp.760-772
    • /
    • 1999
  • The CAN is a serial communication protocol for distributed real-time control and automation systems. Data generated from field devices in the distributed control of power plant are classified into three categories: real-time event data, real-time control data, non-real-time data. These data share a CAN medium. If the traffic of the CAN protocol is not efficiently controlled, performance requirements of the power plant system could not be satisfied. This paper proposes a bandwidth allocation algorithm that can be applicable to the CAN protocol. The bandwidth allocation algorithm not only satisfies the performance requirements of the real-time systems in the power plant but also fully utilizes the bandwidth of CAN. The bandwidth allocation algorithm introduced in this paper is validated using the integrated discrete-event/continuous-time simulation model which comprises the CAN network and distributed control system of power plant.

  • PDF

Implementation of Real-Time Communication in CAN for a Humanoid Robot (CAN 기반 휴머노이드 로봇의 실시간 데이터 통신 구현)

  • Kwon Sun-Ku;Kim Byung-Yoon;Kim Jin-Hwan;Huh Uk-Youl
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.55 no.1
    • /
    • pp.24-30
    • /
    • 2006
  • The Controller Area Network (CAN) is being widely used for real-time control application and small-scale distributed computer controller systems. When the stuff bits are generated by bit-stuffing mechanism in the CAN network, it causes jitter including variations in response time and delay In order to eliminate this jitter, stuff bits must be controlled to minimize the response time and to reduce the variation of data transmission time. This paper proposes the method to reduce the stuff bits by restriction of available identifier and bit mask using exclusive OR operation. This da manipulation method are pretty useful to the real-time control strategy with respect to performance. However, the CAN may exhibit unfair behavior under heavy traffic conditions. When there are both high and low priority messages ready for transmission, the proposed precedence priority filtering method allows one low priority message to be exchanged between any two adjacent higher priority messages. In this way, the length of each transmission delays is upper bounded. These procedures are implemented as local controllers for the ISHURO(Inha Semvung Humanoid Robot).

The Medical Bed System for Preventing Pressure Ulcer Using the Two-Stage Control

  • Kim, Jungae;Lee, Youngdae;Seon, Minju;Lim, Jae-Young
    • International journal of advanced smart convergence
    • /
    • v.10 no.1
    • /
    • pp.151-158
    • /
    • 2021
  • The main cause of ulcer is pressure, which starts to develop when the critical body pressure (32mmHg) is exceeded, and when the critical time elapses, ulcer occurs. In this study, the keyboard mechanism of the medical bed with 4 bar links was adopted, and each key can be controlled vertically. A key has one servo drive and one sensor controller which hasseveral body pressure sensors. The sensor controllers and the servo drives are connected to the main controller by two CAN (Car Are Network) in series, respectively. By reading the maximum body pressure value of each keyboard sensor, and by calculating the error value based on the critical body pressure, the fuzzy controller moves each key so that the total error becomes zero. If the fuzzy controller fails, then it prevents ulcer by lifting and lowering the keys of the bed alternatively within a short time. Thus, the controller operates in two-stage. The validity and effectiveness of the proposed approach have been verified through experiments.

Control of Real-Time Systems with Random Time-Delays

  • Choi, Hyoun-Chul;Hong, Suk-Kyo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.348-353
    • /
    • 2003
  • This paper considers the optimal control problem in real-time control systems with random time-delays. It proposes an algorithm which uses the linear quadratic (LQ) control method and a dedicated technique to compensate for the time-delay effects. Since it is assumed that the time-delays are unknown but the probability distribution of the delays are known a priori, the algorithm considers the mean value of the time-delays as a nominal value for random delay compensation. An example is given to show the performance of the proposed algorithm, where an inverted pendulum system is controlled over a controller-area network (CAN). Simulation results show that the proposed algorithm provides good performance results. It is shown that our algorithm is comparable to existing algorithms in both computation cost and performance.

  • PDF