• Title/Summary/Keyword: controllable fluid

Search Result 68, Processing Time 0.025 seconds

Real-Time Force Sensing in the Envelope of Zebrafish Egg during Micropipette Penetration

  • Yun, Seok;Kim, Deok-Ho;Kim, Byung-Kyu;Lee, Sang-Ho;Park, Gwi-Tae
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.2451-2456
    • /
    • 2003
  • In biological cell manipulation, manual thrust or penetration of an injection pipette into an egg is currently performed by a skilled operator, relying only on visual feedback information. Massive load of various micro injection of either genes, fluid or cells in the postgenomic era calls a more reliable and automatic micro injection system that can test hundreds of genes or cell types at a single experiment. We initiated to study cellular force sensing in zebrafish eggs as the first step for the development of a more controllable micro injection system by any inexperienced operator. Zebrafish eggs at different developmental stages were collected and an integrated biomanipulation system was employed to measure cellular force during penetrating the egg envelope, the chorion. First of all, the biomanipulation system integrated with cellular force sensing instrument is implemented to measure the penetration force of cell membranes and characterize mechanical properties of zebrafish embryo cells. Furthermore, implementation of cellular force sensing system and calibration are presented. Finally, the cellular force sensing of penetrating cell membranes at each developmental stages was experimentally performed. The results demonstrated that the biomanipulation system with force sensing capability can measure cellular force at real-time while the injection operation is undergoing. The magnitude of the measured force was in the range of several hundreds of uN. The precise real-time measurement should provide the first step forwards for the development of an automatic and reliable injection system of various materials into biological cells.

  • PDF

A Global Simulation of SiH4/H2 Discharge in a Planar-type Inductively Coupled Plasma Source (평판형 유도결합 플라즈마 장치의 SiH4/H2 방전에 대한 공간 평균 전산모사)

  • Lee, Won-Gi;Kwon, Deuk-Chul;Yoon, Nam-Sik
    • Journal of the Korean Vacuum Society
    • /
    • v.18 no.6
    • /
    • pp.426-434
    • /
    • 2009
  • A global simulation of $SiH_4/H_2$ discharge is conducted in a planar-type inductively coupled plasma (ICP) discharge. We numerically solve a set of spatially averaged fluid equations for electrons, positive ions, negative ions, neutrals, and radicals. Absorbed power by electrons is determined by an analytic electron heating theory including the anomalous skin effect. Also, we investigate functional dependence of various discharge quantities such as the densities of various species and the temperature of electron on external controllable parameters such as ratio between $SiH_4$ and $H_2$, power and pressure.

Hybrid Control Model of MR Damper for Seismic Response Control of Adjacent Buildings (인접건축물의 지진응답 제어를 위한 MR 감쇠기의 복합제어 모델)

  • Kim, Gee-Cheol;Kang, Joo-Won;Chae, Seoung-Hun
    • Journal of Korean Association for Spatial Structures
    • /
    • v.11 no.2
    • /
    • pp.101-110
    • /
    • 2011
  • Many researchers have attempted to apply semi-active control systems in the civil engineering structures. Recently, magneto-rheological(MR) fluid dampers have been developed. This MR damper is one of semi-active dampers as a new class of smart dampers. This paper discusses the application of MR damper for seismic response control of adjacent buildings subjected to earthquake. Here, a controllable damping force of MR damper that is installed between adjacent buildings is applied to seismic response control. A hybrid model combines skyhook and groundhook control algorithm so that the benefits of each can be combined together. In this paper, hybrid control model are applied to the multi degree of freedom system representative of buildings in order to reduce seismic response of adjacent buildings. And the performance of hybrid control model is compared with that of others. It was demonstrated that hybrid control model or adjacent buildings with MR damper was effective for seismic response control of two adjacent buildings reciprocally.

Magneto-rheological and passive damper combinations for seismic mitigation of building structures

  • Karunaratne, Nivithigala P.K.V.;Thambiratnam, David P.;Perera, Nimal J.
    • Earthquakes and Structures
    • /
    • v.11 no.6
    • /
    • pp.1001-1025
    • /
    • 2016
  • Building structures generally have inherent low damping capability and hence are vulnerable to seismic excitations. Control devices therefore play a useful role in providing safety to building structures subject to seismic events. In recent years semi-active dampers have gained considerable attention as structural control devices in the building construction industry. Magneto-rheological (MR) damper, a type of semi-active damper has proven to be effective in seismic mitigation of building structures. MR dampers contain a controllable MR fluid whose rheological properties vary rapidly with the applied magnetic field. Although some research has been carried out on the use of MR dampers in building structures, optimal design of MR damper and combined use of MR and passive dampers for real scale buildings has hardly been investigated. This paper investigates the use of MR dampers and incorporating MR-passive damper combinations in building structures in order to achieve acceptable levels of seismic performance. In order to do so, it first develops the MR damper model by integrating control algorithms commonly used in MR damper modelling. The developed MR damper is then integrated in to the seismically excited structure as a time domain function. Linear and nonlinear structure models are evaluated in real time scenarios. Analyses are conducted to investigate the influence of location and number of devices on the seismic performance of the building structure. The findings of this paper provide information towards the design and construction of earthquake safe buildings with optimally employed MR dampers and MR-passive damper combinations.

Micromolding Technique for Controllable Anisotropic Polymeric Particles with Convex Roof (볼록한 지붕을 갖는 이방성 고분자 입자의 곡률반경 제어를 위한 마이크로몰딩 기술)

  • Jeong, Jae-Min;Son, Jung-Woo;Choi, Chang-Hyung;Lee, Chang-Soo
    • Clean Technology
    • /
    • v.18 no.3
    • /
    • pp.295-300
    • /
    • 2012
  • Synthesis of well-defined particle with tunable size, shape, and functionalities is strongly emphasized for various applications such as chemistry, biology, material science, chemical engineering, medicine, and biotechnology. This study presents micromolding method for the fabrication of anisotropic particles with elegant control of curvature of covex roof. For the demostration of rapid fabrication of the particles, we have applied polydimethylsiloxane (PDMS) micromold as structure guiding template and wetting fluid to control curvature of roof of the particles. Based on this approach, we can control the radius of curvature from $20{\mu}m$ to $70{\mu}m$ with different aspect ratio of mold. In addition, wetting fluids with different wetting properties can also modulate the height and radius of curvature of the particles. We envision that this methodology is promising tool for precise control of particle shape in 3-dimensional space and new synthetic route for anisotropic particles with cost effective, simple, easy, and fast procedure.

Advances in serological diagnosis of Taenia solium neurocysticercosis in Korea

  • Ahn, Chun-Seob;Kim, Jeong-Geun;Huh, Sun;Kang, Insug;Kong, Yoon
    • Genomics & Informatics
    • /
    • v.17 no.1
    • /
    • pp.7.1-7.10
    • /
    • 2019
  • Cysticercosis, a parasitic disease caused by Taenia solium metacestode (TsM), has a major global public health impact in terms of disability-adjusted life years. The parasite preferentially infects subcutaneous tissue, but may invade the central nervous system, resulting in neurocysticercosis (NC). NC is an important neglected tropical disease and an emerging disease in industrialized countries due to immigration from endemic areas. The prevalence of taeniasis in Korea declined from 0.3%-12.7% during the 1970s to below 0.02% since the 2000s. A survey conducted from 1993 to 2006 revealed that the percentage of tested samples with high levels of specific anti-TsM antibody declined from 8.3% to 2.2%, suggesting the continuing occurrence of NC in Korea. Modern imaging modalities have substantially improved the diagnostic accuracy of NC, and recent advances in the molecular biochemical characterization of the TsM cyst fluid proteome also significantly strengthened NC serodiagnosis. Two glycoproteins of 150 and 120 kDa that induce strong antibody responses against sera from patients with active-stage NC have been elucidated. The 150 kDa protein showed hydrophobic-ligand binding activities and might be critically involved in the acquisition of host-derived lipid molecules. Fasciclin and endophilin B1, both of which play roles in the homeostatic functions of TsM, showed fairly high antibody responses against calcified NC cases. NC is now controllable and manageable. Further studies should focus on controlling late-onset intractable seizures and serological diagnosis of NC patients infected with few worms. This article briefly overviews diagnostic approaches and discusses current issues relating to NC serodiagnosis.

Mathematical Models of Substrate Utilization within Bacterial Films (미생물막(微生物膜)을 이용(利用)한 폐수처리(廢水處理)의 수학적(數學的) 모델에 관한 연구(研究))

  • Chung, Tai Hak
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.1 no.1
    • /
    • pp.43-51
    • /
    • 1981
  • A model of substrate utilization witbin bacterial films has been developed and simulated for a better understanding of fixed film treatment processes. The model consists of two parts, a deep biofilm and a thin biofilm, which are classified based on substrate penetration into the biofilm. Substrate concentration and flux within a biofilm can be computed from the model. Three dimensionless parameters, ${\phi}_1$, ${\phi}_2$ and $\bar{S}_b$ were obtained during model construction, and the substrate concentration and flux can be expressed in terms of these parameters. It has been found that an. increase of ${\phi}_1$ or a decrease of ${\phi}_2$ results in an increase of treatment efficiencies. It has also been found that systems maintaining high efficiencies belong to a deep biofilm. Among the constants involved, the mass transfer coefficient is the only controllable term and it depends Largely on fluid velocity near the biofilm surface. Substrate removal efficiency may be increased with an increase of fluid velocity for a biofilm of fixed depth. However, film depth is decreased due to sloughing with increasing velocity, and the system reaches a new steady state. Because changes in film depth are not well defined quantitatively yet, the efficiency can not be clearly described at a new steady state.

  • PDF

Effect of Vane Angle of Swirl Type Mixer on Flow Mixing and Pressure Drop in Marine Selective Catalytic Reduction Systems (선박용 SCR 시스템에서 스월형 혼합기의 날개 각도가 유동혼합 및 압력강하에 미치는 영향)

  • Park, Taewha;Sung, Yonmo;Kim, Taekyoung;Choi, Cheolyong;Kim, Duckjool;Choi, Gyungmin
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.4
    • /
    • pp.443-448
    • /
    • 2015
  • A swirl type mixer was developed to improve the flow mixing performance of a marine selective catalytic reduction system. In this study, the swirl type mixer and a multi-staged swirl type mixer, in which the angle of the vanes at each stage is controllable were considered to provide the optimal region of angles for the mixers. The effects of the vane angles in both mixers on the uniformity index and pressure drop were investigated using a computational fluid dynamics simulation. In the swirl type mixer, the optimal conditions for the flow mixing performance were observed at vane angles from 30 to 60 degrees when vane angles could be adjusted between 10 to 80 degrees, however, the pressure drop increased continually with increasing vane angle of the mixer. On the other hand, control of the individual staged angles of the multi-staged mixer showed that it is possible to keep enhancing flow mixing performance while reducing the pressure drop.