• Title/Summary/Keyword: control system theory

Search Result 1,785, Processing Time 0.034 seconds

A Ship Motion Control System for Autonomous Navigation (지능형 자율운항제어를 위한 선박운동제어시스템)

  • 이원호;김창민;최중락;김용기
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.9 no.6
    • /
    • pp.674-682
    • /
    • 2003
  • Ship autonomous navigation is designated as what computerizes mental faculties possessed of navigation experts, which are building navigation plans, grasping the situation, forecasting the fluctuation, and coping with the situation. An autonomous navigation system, which consists of several subsystems such as navigation system, a collision avoidance system, several data fusion systems, and a motion control system, is based on an intelligent control architecture for the sake of integrating the systems. The motion control system, which is one of the most essential system in autonomous navigation system, controls its propulsion and steering gears to move the ship satisfying its hydrodynamic characteristics. This paper is the study on the ship movement control system and its implementation which are totally developed and run on virtual-world system. Receiving the high-level control values such as a waypoint presented from the collision avoidance system, the motion control system generates them to low-level control values for propulsion and steering devices. In the paper, we develop a ship motion controller using Oldenburger's theory based on mathematical fundamentals, and simulate it with various scenarios in order to verify its performance.

The Speed Control of Induction Motor Using Optimal Control Theory (최적제어 이론을 이용한 유도전동기의 속도제어)

  • Kim, Jung-Wook;Kim, Dae-Ho;Park, Seong-Wook;Lee, Young-Seog;Seo, Bo-Hyeok
    • Proceedings of the KIEE Conference
    • /
    • 2001.07d
    • /
    • pp.2063-2065
    • /
    • 2001
  • This paper presents speed control of a three-phase Induction Motor(I.M.) based on the optimal control theory. This technique is based on the optimal preview controller. The proposed technique comprises a new error system, vector control of the I.M. and the preview feedforwad control loop. Preview feedforward steps are introduced into the control law to enhance the transient response and to improve the robustness of the controlled system. Some computer simulation studies are carried out.

  • PDF

Key Distribution Process for Encryption of SCADA Communication using Game Theory applied Multiagent System

  • Kim, Hak-Man;Kang, Dong-Joo
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.11
    • /
    • pp.34-43
    • /
    • 2009
  • SCADA (Supervisory Control and Data Acquisition) system has been used for remote measurement and control on the critical infrastructures as well as modem industrial facilities. As cyber attacks increase on communication networks, SCADA network has been also exposed to cyber security problems. Especially, SCADA systems of energy industry such as electric power, gas and oil are vulnerable to targeted cyber attack and terrorism Recently, many research efforts to solve the problems have made progress on SCADA network security. In this paper, flexible key distribution concept is proposed for improving the security of SCADA network using Multiagent System (MAS).

A Quantitative Model of System-Man Interaction Based on Discrete Function Theory

  • Kim, Man-Cheol;Seong, Poong-Hyun
    • Nuclear Engineering and Technology
    • /
    • v.36 no.5
    • /
    • pp.430-449
    • /
    • 2004
  • A quantitative model for a control system that integrates human operators, systems, and their interactions is developed based on discrete functions. After identifying the major entities and the key factors that are important to each entity in the control system, a quantitative analysis to estimate the recovery failure probability from an abnormal state is performed. A numerical analysis based on assumed values of related variables shows that this model produces reasonable results. The concept of 'relative sensitivity' is introduced to identify the major factors affecting the reliability of the control system. The analysis shows that the hardware factor and the design factor of the instrumentation system have the highest relative sensitivities in this model. T도 probability of human operators performing incorrect actions, along with factors related to human operators, are also found to have high relative sensitivities. This model is applied to an analysis of the TMI-2 nuclear power plant accident and systematically explains how the accident took place.

Stability Analysis and Design of a Nonlinear Neuromuscular Control System of a Myoelectric Prosthetic Hand

  • Pak, Pyong-Sik;Okuno, Ryuhei;Akazawa, Kenzo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1489-1494
    • /
    • 2003
  • A neuromuscular control system of a myoelectric prosthetic hand (PH) constitutes a nonlinear system with a dead zone whose magnitude is equal to its joint angle when the PH just grasps an object. This is because the neuromuscular control system remains an open-loop system until the PH grasps the object but it constitutes a feedback control system after the PH griped the object in which a torque induced in the fingers of the PH is fed back. To improve the transient performance of the control system, it is desirable to make the feed-forward gain as large as possible, so long as the stability of the system is not impaired. It is also desired that the control system remains stable even when the PH lifts a heavy or rigid object, because this makes the closed loop gain large and leads to the closed system unstable. According to the theory of stability analysis of nonlinear systems, we can only know the sufficient conditions that the system should be stable. Thus the nonlinear theory on stability is insufficient to be used to design the neuromuscular control system for improving its transient responses. This paper shows that the nonlinear system with a dead zone can be approximated to a linear feedback system and that well-known methods of analysis and design on linear control systems can be applicable. It is also shown through various simulation results that errors induced by approximation are practically negligible and thus the design methods are quite accurate.

  • PDF

Research on aging-related degradation of control rod drive system based on dynamic object-oriented Bayesian network and hidden Markov model

  • Kang Zhu;Xinwen Zhao;Liming Zhang;Hang Yu
    • Nuclear Engineering and Technology
    • /
    • v.54 no.11
    • /
    • pp.4111-4124
    • /
    • 2022
  • The control rod drive system is critical to the reactor's reliable operation. The performance of its control system and mechanical system will gradually deteriorate because of operational and environmental stresses, thus increasing the reactor's operational risk. Currently there are few researches on the aging-related degradation of the entire control rod drive system. Because it is difficult to quantify the effect of various environmental stresses and establish an accurate physical model when multiple mechanisms superimposed in the degradation process. Therefore, this paper investigates the aging-related degradation of a control rod drive system by integrating Dynamic Object-Oriented Bayesian Network and Hidden Markov Model. Uncertainties in the degradation of the control system and mechanical system are addressed by using fuzzy theory and the Hidden Markov Model respectively. A system which consists of eight control rod drive mechanisms divided into two groups is used to demonstrate the method. The aging-related degradation of the control rod drive system is analyzed by the Bayesian inference algorithm based on the accelerated life test data, and the impact of different operating schemes on the system performance is also investigated. Meanwhile, the components or units that have major impact on the system's performance are identified at different operational phases. Finally, several essential safety measures are suggested to mitigate the risk caused by the system degradation.

Modeling and Control of Intersection Network using Real-Time Fuzzy Temporal Logic Framework (실시간 퍼지 시간논리구조를 이용한 교차로 네트워크의 모델링과 제어)

  • Kim, Jung-Chul;Lee, Won-Hyok;Kim, Jin-Kwon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.4
    • /
    • pp.352-357
    • /
    • 2007
  • This paper deals with modeling method and application of Fuzzy Discrete Event System(FDES). FDES have characteristics which Crisp Discrete Event System(CDES) can't deals with and is constituted with the events that is determined by vague and uncertain judgement like biomedical or traffic control. We proposed Real-time Fuzzy Temporal Logic Framework(RFTLF) to model Fuzzy Discrete Event System. It combines Temporal Logic Framework with Fuzzy Theory. We represented the model of traffic signal systems for intersection to have the property of Fuzzy Discrete Event System with Real-time Fuzzy Temporal Logic Framework and designed a traffic signal controller for smooth traffic flow. Moreover, we proposed the method to find the minimum-time route to reach the desired destination with information obtained in each intersection. In order to evaluate the performance of Real-time Fuzzy Temporal Logic Framework model proposed in this paper, we simulated unit-time extension traffic signal controller model of the latest signal control method on the same condition.

Finite-Time Sliding Mode Controller Design for Formation Control of Multi-Agent Mobile Robots (다중 에이전트 모바일 로봇 대형제어를 위한 유한시간 슬라이딩 모드 제어기 설계)

  • Park, Dong-Ju;Moon, Jeong-Whan;Han, Seong-Ik
    • The Journal of Korea Robotics Society
    • /
    • v.12 no.3
    • /
    • pp.339-349
    • /
    • 2017
  • In this paper, we present a finite-time sliding mode control (FSMC) with an integral finite-time sliding surface for applying the concept of graph theory to a distributed wheeled mobile robot (WMR) system. The kinematic and dynamic property of the WMR system are considered simultaneously to design a finite-time sliding mode controller. Next, consensus and formation control laws for distributed WMR systems are derived by using the graph theory. The kinematic and dynamic controllers are applied simultaneously to compensate the dynamic effect of the WMR system. Compared to the conventional sliding mode control (SMC), fast convergence is assured and the finite-time performance index is derived using extended Lyapunov function with adaptive law to describe the uncertainty. Numerical simulation results of formation control for WMR systems shows the efficacy of the proposed controller.

Composite Neural Networks for Controlling Semi-Linear Dynamical Systrms: Example from Inverted Pendulum Problem

  • Yamamoto, Yoshinobu;Anzai, Yuichiro
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1989.10a
    • /
    • pp.1129-1134
    • /
    • 1989
  • In this paper, we propose a neural network for learning to control semi-linear dynamical systems. The network is a composite system of four three-layer backpropagation subnetworks, and is able to control inverted pendulums better than systems based on modern control theory at least in some ranges of parameters. Three of the four subnetworks in our network system process angles, velocities, and positions of a moving inverted pendulum, respectively. The outputs from those three subnetworks are input to the remaining subnetwork that makes control decisions. Each of the four subnetworks learns connection weights independently by backpropagation algorithms. Teaching signals are given by the human operator. Also, input signals are generated by the human operator, but they are converted by preprocessors to actual input data for the three subnetworks except for the network for control decisions. The whole system is implemented on both of 16 bit personal computers and 32 bit workstations. First, we briefly provide the research background and the inverted pendulum problem itself, followed by the description of our composite neural network model. Next, some results from the simulation are given, which are subsequently compared with the results from a control system based on modern control theory. Then, some discussions and conclusion follow.

  • PDF

Determination of Control Limits of Conditional Variance Investigation: Application of Taguchi's Quality Loss Concept (조건부 차이조사의 관리한계 결정: 다구찌 품질손실 개념의 응용)

  • Pai, Hoo Seok;Lim, Chae Kwan
    • Journal of Korean Society for Quality Management
    • /
    • v.49 no.4
    • /
    • pp.467-482
    • /
    • 2021
  • Purpose: The main theme of this study is to determine the optimal control limit of conditional variance investigation by mathematical approach. According to the determination approach of control limit presented in this study, it is possible with only one parameter to calculate the control limit necessary for budgeting control system or standard costing system, in which the limit could not be set in advance, that's why it has the advantage of high practical application. Methods: This study followed the analytical methodology in terms of the decision model of information economics, Bayesian probability theory and Taguchi's quality loss function concept. Results: The function suggested by this study is as follows; ${\delta}{\leq}\frac{3}{2}(k+1)+\frac{2}{\frac{3}{2}(k+1)+\sqrt{\{\frac{3}{2}(k+1)\}^2}+4$ Conclusion: The results of this study will be able to contribute not only in practice of variance investigation requiring in the standard costing and budgeting system, but also in all fields dealing with variance investigation differences, for example, intangible services quality control that are difficult to specify tolerances (control limit) unlike tangible product, and internal information system audits where materiality standards cannot be specified unlike external accounting audits.