• 제목/요약/키워드: control network

Search Result 9,981, Processing Time 0.034 seconds

Access Control for D2D Systems in 5G Wireless Networks

  • Kim, Seog-Gyu;Kim, Jae-Hyun
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.1
    • /
    • pp.103-110
    • /
    • 2021
  • In this paper, we compare two access control mechanisms for D2D(Device-to-Device) systems in 5G wireless networks and propose an effective access control for 5G D2D networks. Currently, there is no specified access control for 5G D2D networks but there can be two access control approaches for 5G D2D networks. One is the UE-to-Network Relay based access control and the other is the Remote UE(User Equipment) based access control. The former is a UE-to-Network Relay carries out the access control check for 5G D2D networks but the latter is a Remote UE performs the access control check for 5G D2D networks. Through simulation and evaluation, we finally propose the Remote UE based access control for D2D systems in 5G wireless networks. The proposed approach minimizes signalling overhead between the UE-to-Network Relay and the Remote UE and more efficiently performs the access control check, when the access control functionalities are different from the UE-to-Network Relay in 5G D2D networks.

Experimental Studies on Neural Network Force Tracking Control Technique for Robot under Unknown Environment (미정보 환경 하에서 신경회로망 힘추종 로봇 제어 기술의 실험적 연구)

  • Jeong, Seul;Yim, Sun-Bin
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.4
    • /
    • pp.338-344
    • /
    • 2002
  • In this paper, neural network force tracking control is proposed. The conventional impedance function is reformulated to have direct farce tracking capability. Neural network is used to compensate for all the uncertainties such as unknown robot dynamics, unknown environment stiffness, and unknown environment position. On line training signal of farce error for neural network is formulated. A large x-y table is built as a test-bed and neural network loaming algorithm is implemented on a DSP board mounted in a PC. Experimental studies of farce tracking on unknown environment for x-y table robot are presented to confirm the performance of the proposed technique.

Dynamic Control of Track Vehicle Using Fuzzy-Neural Control Method (퍼지-뉴럴 제어기법에 의한 궤도차량의 동적 제어)

  • 한성현;서운학;조길수;윤강섭
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.133-139
    • /
    • 1997
  • This paper presents a new approach to the dynamic control technique for track vehicle system using neural network-fuzzy control method. The proposed control scheme uses a Gaussian function as a unit function in the neural network-fuzzy, and back propagation algorithm to train the fuzzy-neural network controller in the framework of the specialized learning architecture. It is propored a learning controller consisting of two neural network-fuzzy based on independent resoning and a connection net with fixed weights to simply the neural network-fuzzy. The performance of the proposed controller is shown by simulation for trajectory tracking of the speed and azimuth of a track vehicle

  • PDF

Control of Left Ventricular Assist Device using Neural Network Feedback Feedforward Controller (인공신경망 Feedforward제어기를 이용한 좌심실보조장치의 제어실험)

  • 정성택;류정우;김상현
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.150-155
    • /
    • 1997
  • In this paper,we present neural network for control of Left Ventricular Assist Device(LVAD)system with a pneumatically driven mock cirulation system. It is necessary to apply high perfomance control techniques, since the LVAD system represent nonlinear and time-varing characteristics. Fortunately, the neural network can be applied to control of a nonliner dynamic system by learning capability. In this study,we identify the LVAD system with neural network and control the LVAD system by PID controller and neural network feedforward controller. The ability and effectiveness of controlling the LVAD system using the proposed algorithm will be demonstrated by computer simulation and experiment.

  • PDF

Development of a LonRF Intelligent Device-based Ubiquitous Home Network Testbed (LonRF 지능형 디바이스 기반의 유비쿼터스 홈네트워크 테스트베드 개발)

  • 이병복;박애순;김대식;노광현
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.6
    • /
    • pp.566-573
    • /
    • 2004
  • This paper describes the ubiquitous home network (uHome-net) testbed and LonRF intelligent devices based on LonWorks technology. These devices consist of Neuron Chip, RF transceiver, sensor, and other peripheral components. Using LonRF devices, a home control network can be simplified and most devices can be operated on LonWorks control network. Also, Indoor Positioning System (IPS) that can serve various location based services was implemented in uHome-net. Smart Badge of IPS, that is a special LonRF device, can measure the 3D location of objects in the indoor environment. In the uHome-net testbed, remote control service, cooking help service, wireless remote metering service, baby monitoring service and security & fire prevention service were realized. This research shows the vision of the ubiquitous home network that will be emerged in the near future.

An Analysis of Network-Based Control System Using CAN(Controller Area Network) Protocol (CAN 프로토콜을 이용한 네트워크 기반 제어 시스템의 구조 분석)

  • 전종만;김대원;김홍석;조영조
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.549-549
    • /
    • 2000
  • In the previous work, we dealt with a traffic analysis of network-based control system and its architecture using the CAN protocol. It is difficult to determine an optimal network architecture for a specific system. In this paper, we propose the architecture of network-based control system applicable to a specific AGV system with manipulator arms. We define the fixed number of periodic messages to be occurred in this system. In the proposed system architecture, we analyse its traffic for the real-time communication of all messages, determine the optimal sampling period of an analog sensor to be satisfied with the required specification and the number of possible sensors to be added through simulation.

  • PDF

Application of Neural Network Precompensated PID Controller for Load Frequency Control of Power Systems (전력계통의 부하주파수 제어를 위한 신경회로망 전 보상 PID 제어기 적용)

  • 김상효
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.23 no.4
    • /
    • pp.480-487
    • /
    • 1999
  • In this paper we propose a neural network precompensated PID(NNP PID) controller for load frequency control of 2-area power system. While proportional integral derivative(PID) controllers are used in power system they have many problems because of high nonlinearities of the power system So a neural network-based precompensation scheme is adopted into a conventional PID controller to obtain a robust control to the nonlinearities. The applied neural network precompen-sator uses an error back-propagation learning algorithm having error and change of error as inputand considers the changing component of forward term of weighting factor for reducing of learning time. Simulation results show that the proposed control technique is superior to a conventional PID controller and an optimal controller in dynamic responses about load disturbances. The pro-posed technique can be easily implemented by adding a neural network precompensator to an existing PID controller.

  • PDF

Internet Web-Based Rectifier Remote Control System Using SNMP (인터넷 웹 기반 환경에서의 정류기용 원격 제어 시스템)

  • 최주엽;오영은;전호석;김택용
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.4 no.6
    • /
    • pp.570-578
    • /
    • 1999
  • This paper aims at developing remote control system to control and monitor distributed various devices t through Internet or information communication network. SNJV!P(Simple Network l\ilanagement Protocol) and R Rectifier system with SN:\IP are adoptL'Cl for applied system with network management protocoJ, respectiveJy. F For controJling and monitoring distributed devices in realtime, Java environment software is constructed. Also g general--purpose interface controller between network device and applied device is pro[XJsed. The ProPOSL'Cl c controller is also able to control various devices with communication network remotely.

  • PDF

Robust speed control of DC Motor using Neural network-PID hybrid controller (신경회로망-PID복합형제어기를 이용한 직류 전동기의 강인한 속도제어)

  • Yoo, In-Ho;Oh, Hoon;Cho, Hyun-Sub;Lee, Sung-Soo;Kim, Yong-Wook;Park, Wal-Seo
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.18 no.1
    • /
    • pp.85-89
    • /
    • 2004
  • Robust control for feedback control system is needed according to the highest precision of industrial automation. However, when a neural network feedback control system has an effect of disturbance, it is very difficult to guarantee the robustness of control system. As a compensation method solving this problem, in this paper, hybrid control method of neural network controller and PID controller is presented. A neural network controller is operated as a main controller, a PID controller is a assistant controller which operates only when some undesirable phenomena occur, e.q., when the error hit the boundary of constraint set. The robust control function of neural network-PID hybrid controller is demonstrated by speed control of Motor.

Stable Path Tracking Control Using a Wavelet Based Fuzzy Neural Network for Mobile Robots

  • Oh, Joon-Seop;Park, Jin-Bae;Choi, Yoon-Ho
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.2254-2259
    • /
    • 2005
  • In this paper, we propose a wavelet based fuzzy neural network(WFNN) based direct adaptive control scheme for the solution of the tracking problem of mobile robots. To design a controller, we present a WFNN structure that merges advantages of neural network, fuzzy model and wavelet transform. The basic idea of our WFNN structure is to realize the process of fuzzy reasoning of wavelet fuzzy system by the structure of a neural network and to make the parameters of fuzzy reasoning be expressed by the connection weights of a neural network. In our control system, the control signals are directly obtained to minimize the difference between the reference track and the pose of mobile robot using the gradient descent(GD) method. In addition, an approach that uses adaptive learning rates for the training of WFNN controller is driven via a Lyapunov stability analysis to guarantee the fast convergence, that is, learning rates are adaptively determined to rapidly minimize the state errors of a mobile robot. Finally, to evaluate the performance of the proposed direct adaptive control system using the WFNN controller, we compare the control performance of the WFNN controller with those of the FNN, the WNN and the WFM controllers.

  • PDF