• 제목/요약/키워드: control moment gyro

검색결과 32건 처리시간 0.018초

제어모멘트자이로 클러스터의 구동법칙 (Steering Laws for Control Moment Gyro Cluster)

  • 이승목;서현호;이승우;손준원
    • 항공우주기술
    • /
    • 제7권2호
    • /
    • pp.53-57
    • /
    • 2008
  • 지식경제부 과제인 중형위성급 제어모멘트자이로 성능검증모델 개발 사업을 수행하면서 연구한 CMG 클러스터의 구동법칙에 대해 알아본다. 본 논문에서는 MP, SR, SR 탈출/회피 구동법칙에 대해 비교를 하고, 각 구동법칙의 성능을 시뮬레이션과 실험을 통해서 확인해보았다.

  • PDF

Highly Agile Actuator Development Status of an 800 mNm Control Moment Gyro (CMG)

  • Goo-Hwan Shin;Hyosang Yoon;Hyeongcheol Kim;Dong-Soo Choi;Jae-Suk Lee;Young-Ho Shin;Eunji Lee
    • 우주기술과 응용
    • /
    • 제3권4호
    • /
    • pp.322-332
    • /
    • 2023
  • Satellite attitude-control actuators are equipped with a reaction wheel for three-axis attitude control. The reaction wheel rotates a motor inside the actuator to generate torque in the vector direction. When using the reaction wheel, there are restrictions on the torque values generated as the motor rotates. The torque value of the reaction wheels mounted on small satellites is approximately 10 mNm, and high values are not used. Therefore, three-axis attitude control of a small satellite is possible using a reaction wheel, but this method is not suitable for missions that require rapid attitude control at a specific time. As a technology to overcome the small torque value of the reaction wheel, the control moment gyro (CMG) is currently in wide use as a rapid attitude-control actuator in space satellites. The CMG has an internal gimbal mounted at a right angle to the rotation motor and generates a large torque value. In general, when the gimbal operates, a torque value approximately 100 times greater is generated, making it suitable for rapid posture maneuvering. Currently, we are developing a technology for mounting a controlled moment gyro on a small satellite, and here we share the development status of an 800 mNm CMG.

2개의 가변속 제어모멘트자이로를 이용한 인공위성의 자세제어 (Attitude Control of Spacecraft by Two Variable-Speed Control Moment Gyros)

  • 진재현
    • 제어로봇시스템학회논문지
    • /
    • 제21권11호
    • /
    • pp.1027-1033
    • /
    • 2015
  • For the attitude control of spacecraft, two variable-speed control moment gyros are proposed as main actuators in the article. Since a variable-speed control moment gyro (VSCMG) makes two control torques (gyroscopic torque and reaction torque), two VSCMGs are sufficient for controlling 3-axes attitude. Additionally, there are no singular conditions for two non-parallel VSCMGs. Since gyroscopic torque is usually much greater than reaction torque, the control performances of approximately 3 axes may not be the same. However, several missions can be accomplished by controlling two axes. For such missions, a selective axes control method is proposed. The method selects two axes for a certain task and controls the attitude of the selected axes. For the remaining axis, angular speed is controlled for stabilization. A hardware-in-the-loop simulation has been used to test VSCMG modules and to verify the proposed method. Two VSCMGs can be alternative actuators for small satellites.

저가 소형 CMG 성능시험 및 분석 (Low Cost Small CMG Performance Test and Analysis)

  • 이승우;권혁진
    • 한국항공우주학회지
    • /
    • 제39권6호
    • /
    • pp.543-552
    • /
    • 2011
  • 가장 효과적인 모멘텀 교환장치인 CMG(Control Moment Gyro)는 고기동성이 요구되는 위성에 필수적이다. 본 논문에서는 고기동성이 요구되는 소형 인공위성을 위한 Single-Gimbal CMG(SGCMG)에 대한 하드웨어 개발에 필요한 동역학식을 정리하였으며 이를 사용하여 CMG 설계에 필요한 요구사항이 도출되었다. 또한 도출된 요구사항에 따라 출력토크가 1.2Nm인 소형 CMG 성능검증 모델이 제작되었으며, 에러분석 및 성능시험이 수행되었다. 최대 출력토크, 김벌 과도응답특성, 최소 출력토크, 출력토크오차, 김벌 각속도 오차 등을 성능시험 항목으로 선정하어 실험 측정하였고, 시험 결과를 통해 설계 결과를 검증하였다.

c-CMG Cluster for Small Satellites

  • Lee, Seung-Mok;Seo, Hyun-Ho;Rhee, Seung-Wu
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제8권1호
    • /
    • pp.105-114
    • /
    • 2007
  • This article presents the details of a designed control moment gyroscope (CMG) with a constant speed momentum wheel and one-axis-gimbal, and its experimental results performed at Korea Aerospace Research Institute. The CMG which is able to produce a torque of lOO mNm per each, is mounted in a pyramid configuration with four SGCMGs. Each CMG test and a single axis maneuver test with four-CMG cluster configuration are performed to confirm their performance on a ground-test facilities consisted of three major parts: a vibration isolation system, a dynamic force plate (Kistler sensor), and a DSP board. These facilities provide the accurate data of three axial and torques from the control moment gyro. Details of the CMG experimental results are presented with discussion of the experimental errors. The experimental data are compared with theoretical results and both results are used to verify their performance specifications.

Study on Vertical Dynamics Compensation for Wobbling Effect Mitigation of Electrostatically Levitated Gyroscope

  • Lee, Jongmin;Song, Hyungmin;Sung, Sangkyung;Kim, Chang Joo;Lee, Sangwoo
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제15권3호
    • /
    • pp.293-301
    • /
    • 2014
  • We present a study of vertical dynamics control of an electrostatically levitated gyro-accelerometer considering the wobbling effect and propose a tilt stabilization method with newly introduced control electrodes. Typically, a rotor in a vacuum rotates at high velocity, which may create a drift rate and lead to displacement instability due to the tilt angle of the rotor. To analyze this, first we set up a vertical dynamic equation and determined simulation results regarding displacement control. After deriving an equation for drift dynamics, we analyzed the drift rate of the rotor and the wobbling effect for displacement control quantitatively. Then, we designed new sub-electrodes for moment control that will decrease the drift amplitude of wobbling dynamics. Finally, a simulation study demonstrated that the vertical displacement control with the wobbling compensation electrodes mitigated the rotor's drift rate, showing the effectiveness of the newly proposed control electrodes.

공중물체의 자세제어 및 안정화를 위한 밸런스 빔 제어기(신건설장비) 구현 (An Implementation of Balance Beam Controller(New Construction Machinery) for an Attitude Control and Stabilization of an Unstructured Object)

  • 이건영;김진오
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제52권1호
    • /
    • pp.38-44
    • /
    • 2003
  • In this study, the balance beam control subsystem, new type of construction machinery using the mechanism of CMG (control moment gyro), for the attitude control of an unstructured object such as a beam carried by a tower crane, is designed and implemented. The balance beam controller consists of a wheel spinning at high speed and an outer gimbal for controlling the attitude of the wheel. Two motors, one for the wheel and the other for the gimbal, are used. Applying force to the spin axis of the wheel, as an input of the system, leads the torque about the axis because of the gyro effects. This torque is used to control the attitude of the unstructured object in this study. For the stabilizer function, in addition, holding the load at the current position, the attitude of the wheel is freed by cutting the power applied to the gimbal motor of the balance beam controller, which result in the braking force to stop the load by gyro effect. The works presented here include the mechanical system of the balance beam controller, the remote controller, the servo controller and the control software for the system. We also present experimental results to show that the system we proposed is useful as a new construction machinery which can control the attitude of the beam hanging from a tower crane.

자이로 구동장치를 이용한 공중물체의 자세제어 및 안정화 (An Attitude Control and Stabilization of an Unstructured Object using CMG Subsystem)

  • 이건영;권만오
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제49권8호
    • /
    • pp.459-466
    • /
    • 2000
  • In this paper, we propose an attitude controller for an unstructured object using CMG(Control Moment of Gyro) subsystem, which has a stabilizer function. The CMG subsystem consists of one motor for spinning the wheel and the other motor for turning the outer gimbal. While the wheel of CMG subsystem is spinning at high speed, applying force to the spin axis of the wheel leads the torque about the vertical axis. We utilize the torque to control the attitude of object in this study. For the stabilizer function, in additiion, holding the load at the current position, the power applied to the gimbal motor of CMG will be cut, which result in the braking force to stop the load by gyro effect. However, due to the gear reduction connected to outer gimbal, slow load motion cannot generate the braking force. Thus, in this study, we are willing to make a holding force by applying control power to the gimbal motor from the signal of piezoelectric gyroscopic sensor that detected the angular velocity of the load. These two features are demonstrated in experiment, carrying a beam with crane. As a result, load was started to rotate by controlling gimbal positiion and was stopped by turning off the gimbal power. Moreover, slow movement of the load was also rejected by additional control with gyroscopic sensor.

  • PDF

과학기술위성 3호 실시간 관성모멘트 추정 기법 연구 (A Study on Real-Time Inertia Estimation Method for STSAT-3)

  • 김광진;이상철;오화석
    • 한국항공운항학회지
    • /
    • 제20권4호
    • /
    • pp.1-6
    • /
    • 2012
  • The accurate information of mass properties is required for the precise control of the spacecraft. The mass properties, mass and inertia, are changeable by some reasons such as consumption of propellant, deployment of solar panel, sloshing, environmental effect, etc. The gyro-based attitude data including noise and bias reduces the control accuracy so it needs to be compensated for improvement. This paper introduces a real-time inertia estimation method for the attitude determination of STSAT-3, Korea Science Technology Satellite. In this method we first filter the gyro noise with the Extended Kalman Filter(EKF), and then estimate the moment of inertia by using the filtered data from the EKF based on the Recursive Least Square(RLS).

0.6Nm급 소형 CMG 하드웨어 개발 및 성능시험 (Development of 0.6Nm Small CMG Hardware and Performance Test)

  • 장우영;이승우;권혁진
    • 한국항공우주학회지
    • /
    • 제38권9호
    • /
    • pp.933-942
    • /
    • 2010
  • CMG(Control Moment Gyro)는 가장 효과적인 모멘텀 교환장치의 하나로 인공위성의 자세제어에 사용되는 구동기이다. 고기동성을 요구하는 위성에 CMG의 사용이 필수적이며 해외뿐만 아니라 국내에서도 CMG의 개발과 적용에 대한 연구가 활발히 이루어지고 있다. 본 논문에서는 고기동성이 요구되는 소형 인공위성을 위한 Single-Gimbal CMG(SGCMG)에 대한 하드웨어 개발 결과 및 이에 대한 성능검증시험 결과를 제시하였다. 개발 시 요구되는 토크사양은 0.6Nm이며 성능검증시험을 통해 요구되는 사양 이상의 토크를 발생시킬 수 있는 것을 확인하였다. 개발된 SGCMG 하드웨어에 대한 시험결과를 분석하여 향후 성능개선 및 실제 위성에 사용하기 위해 고려되어야 할 사항 등에 대해 논의되었다.