• 제목/요약/키워드: control loading system

검색결과 529건 처리시간 0.026초

우오수분리벽을 이용한 합류식 하수관거의 오염물질 제어효과 (Pollutant Control using the Separation Wall between Stormwater and Sewage in a Combined Sewer System)

  • 이광춘;최봉철;임봉수
    • 상하수도학회지
    • /
    • 제18권4호
    • /
    • pp.461-469
    • /
    • 2004
  • This research is to determine the stormwater effects on sewer concentrations by measuring and comparing the flow and pollutant concentrations during dry and rainy periods in the existing BOX type combined sewer pipes. The monitoring was carried out in two sites, which are the Daesachen outfall having PE separation wall in BOX type combined sewer pipes and the Yongunchen outfall not having seperatioin wall. The average flow-weighted BOD concentraion in Yongunchen outfall is 2-fold lower than in Daesachen outfall because of the dilution effect from ravine water. However, the pollutant mass loading is 16 fold higher in Yongunchen outfall than in Daesachen outfall because of more flows. According to the research, the separation wall controls 52% pollutant mass during a storm period (11.5 mm/hr rainfall intensity). Therefore, the Yongunchen combined sewer system (CSS) need separation wall to control and to prevent more pollutant input in stream. In Daesachen area, the maximum sewer flow rate during a storm period measured about 10 fold bigger than average sewer flow during dry periods. Also the concentrations between rainy and dry periods increase approximately 33 fold for BOD and 120 fold for SS. In Yongunchen area, it increases about 9 fold for the maximum flow rate, 18 fold for BOD and 22 fold for SS during a storm. Therefore, the research is concluded that the separation wall between stromwater (or ravine water) and sewage can decrease the dilution effect in CSS and control the pollutant loading.

전동 부스터의 슬라이딩 모드 제어 (Sliding Mode Control of Electric Booster System)

  • 양이진;최규웅;허건수
    • 제어로봇시스템학회논문지
    • /
    • 제18권6호
    • /
    • pp.519-525
    • /
    • 2012
  • Electric brake booster systems replace conventional pneumatic brake boosters with electric motors and rotary-todisplacement mechanisms including ECU (Electronic Control Unit). Electric booster brake systems require precise target pressure tracking and control robustness because vehicle brake systems operate properly given the large range of loading and temperature, actuator saturation, load-dependent friction. Also for the implement of imbedded control system, the controller should be selected considering the limited memory size and the cycle time problem of real brake ECU. In this study, based on these requirements, a sliding mode controller has been chosen and applied considering both model uncertainty and external disturbance. A mathematical model for the electric booster is derived and simulated. The developed sliding mode controller considering chattering problem has been compared with a conventional cascade PID controller. The effectiveness of the controller is demonstrated in some braking cases.

Comparison of semi-active and passive tuned mass damper systems for vibration control of a wind turbine

  • Lalonde, Eric R.;Dai, Kaoshan;Bitsuamlak, Girma;Lu, Wensheng;Zhao, Zhi
    • Wind and Structures
    • /
    • 제30권6호
    • /
    • pp.663-678
    • /
    • 2020
  • Robust semi-active vibration control of wind turbines using tuned mass dampers (TMDs) is a promising technique. This study investigates a 1.5 megawatt wind turbine controlled by eight different types of tuned mass damper systems of equal mass: a passive TMD, a semi-active varying-spring TMD, a semi-active varying-damper TMD, a semi-active varying-damper-and-spring TMD, as well as these four damper systems paired with an additional smaller passive TMD near the mid-point of the tower. The mechanism and controllers for each of these TMD systems are explained, such as employing magnetorheological dampers for the varying-damper TMD cases. The turbine is modelled as a lumped-mass 3D finite element model. The uncontrolled and controlled turbines are subjected to loading and operational cases including service wind loads on operational turbines, seismic loading with service wind on operational turbines, and high-intensity storm wind loads on parked turbines. The displacement and acceleration responses of the tower at the first and second mode shape maxima were used as the performance indicators. Ultimately, it was found that while all the semi-active TMD systems outperformed the passive systems, it was the semi-active varying-damper-and-spring system that was found to be the most effective overall - capable of controlling vibrations about as effectively with only half the mass as a passive TMD. It was also shown that by reducing the mass of the TMD and adding a second smaller TMD below, the vibrations near the mid-point could be greatly reduced at the cost of slightly increased vibrations at the tower top.

TCP/IP를 이용한 하드웨어 전환장치 설계에 관한 연구 (A Study on the Design of Hardware Switching Mechanism using TCP/IP Communication)

  • 김종섭;조인제;임상수;안종민;강임주
    • 제어로봇시스템학회논문지
    • /
    • 제13권7호
    • /
    • pp.694-702
    • /
    • 2007
  • The SSWM(Software Switching Mechanism) of I-processor concept using non-real time in-house software simulation program is an effective method in order to develop the flight control law in desktop or HQS environment. And, this system has some advantages compare to HSWM(Hardware Switching Mechanism) such as remove the time delay effectiveness and reduce the costs of development. But, if this system loading to the OFP(Operational Flight Program), the OFP guarantee the enough throughput in order to calculate the two control law at once. Therefore, the HSWM(Hardware Switching Mechanism) of 2-processor concept is necessary. This paper addresses the concept of HSWM of the HQS-PC interface using TCP/IP(Transmission Control Protocol/Internet Protocol) communication based on flight control law of advanced supersonic trainer. And, the fader logic of TFS(Transient Free Switch) and stand-by mode of reset '0' type are designed in order to reduce the abrupt transient response and minimize the integrator effect in pitch axis. The result of the analysis based on HQS pilot simulation using HSWM reveals that the flight control systems are switching between two computers without any problem.

적시생산 관리시스템에 관한 연구 - 철근공사를 중심으로 - (A Study on Prototype of Just In Time Production Management System)

  • 이규현;최인성
    • 한국건축시공학회지
    • /
    • 제5권4호
    • /
    • pp.153-164
    • /
    • 2005
  • This study aims at establishing JIT production management system to enable manage the resources input into from procurement through construction based on correct identification of the process, an analysis on the amount of input materials and information sharing. This study has focused on the process control and working process of rebar work in domestic apartment house construction where the overall scope of Process from the planning phase to the construction phase has been analyzed in this study. Also construction phase was selected for the application of a sample case. A basic model for JIT production was generated with these processes. Furthermore A questionnaire and the on-site survey with process, checklist and control data were prepared and performed for the application of JIT production management model into rebar work. The governing scopes of JIT production management system include process management, material management, yard loading and moving management and inventory control, and the operation of each control item

ER 밸브 작동기를 이용한 하역시스템 모델의 슬라이딩모드 제어 (Sliding Mode Control of a Cargo System Model Using ER Valve-Actuators)

  • 최승복;김형석;정달도;성금길
    • 대한기계학회논문집A
    • /
    • 제23권11호
    • /
    • pp.1982-1992
    • /
    • 1999
  • This paper presents a novel concept of cargo handling system adapted for a sea port subjected to severe time-varying tide. The proposed system can perform loading or unloading by using a sort of hydraulic elevator associated with real-time position control. In order to achieve a proof-of-concept, a small-sized laboratory model of the cargo handling system is designed and built. The model consists of three principal components container palette transfer (CPT) car, platform with lifting columns, and cargo ship. The platform activated by electro-rheological (ER) valve-cylinders is actively controlled to track the position of the cargo ship subjected to be varied due to the time-varying tide and wave motion. Following the derivation of the dynamic model for the platform and cargo ship motions, an appropriate control scheme is formulated and implemented. The location of the CPT car is sensed by a set of photoelectric switches and controlled via sequence controller. On the other hand, a sliding mode controller (SMC) is adopted as the position controller for the platform. Both simulated and measured control results are presented to demonstrate the effectiveness of the proposed cargo system.

달리기시 쿠션형과 모션컨트롤형 런닝화 착용에 따른 생체역학적 비교 (A Biomechanical Comparison of Cushioning and Motion Control Shoes During Running)

  • 이기광
    • 한국운동역학회지
    • /
    • 제15권3호
    • /
    • pp.1-7
    • /
    • 2005
  • Excessive pronation and impact force during running are related to various running injuries. To prevent these injuries, three type of running shoes are used, such as cushioning, stability, and motion control. Although there were may studies about the effect of midsole hardness on impact force, no study to investigate biomechanical effect of motion control running shoes. The purpose of this study was to determine biomechanical difference between cushioning and motion control shoes during treadmill running. Specifically, plantar and rearfoot motion, impact force and loading rate, and insole pressure distribution were quantified and compared. Twenty male healthy runners experienced at treadmill running participated in this study. When they ran on treadmill at 3.83 m/s. Kinematic data were collected using a Motion Analysis eight video camera system at 240 Hz. Impact force and pressure distribution data under the heel of right foot were collected with a Pedar pressure insole system with 26 sensors at 360 Hz. Mean value of ten consecutive steps was calculated for kinematics and kinetics. A dependent paired t-test was used to compare the running shoes effect (p=0.05). For most kinematics, motion control running shoes reduced the range of rearfoot motion compared to cushioning shoes. Runners wearing motion control shoe showed less eversion angle during standing less inversion angle at heel strike, and slower eversion velocity. For kinetics, cushioning shoes has the effect to reduce impact on foot obviously. Runners wearing cushioning shoes showed less impact force and loading rate, and less peak insole pressure. For both shoes, there was greater load on the medial part of heel compared to lateral part. For pressure distribution, runners with cushioning shoes showed lower, especially on the medial heel.

불평형 전원시스템을 고려한 3상 능동전력 필터에 관한 연구 (A Study on a 3-phase Active Power Filter Under Unbalanced Input Voltage)

  • 이승요;조준석;최규하;목형수;박영길;신우석
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 1997년도 전력전자학술대회 논문집
    • /
    • pp.233-238
    • /
    • 1997
  • An important assumption for the active power filter design using instantaneous power theory and the d-q transformation method in a 3-phase power system is based on balanced 3-phase system. However, under pratical conditions, the 3-phase power system can not be continuously balanced due to unbalanced loading. In this paper, a method to control the 3-phase active power filer using instantaneous power theory and the d-q transformation under unbalanced power system is presented and the theoretical results are verified by simulated results.

  • PDF

AGV시스템의 메커니즘 개량화 연구 (A Study on Improved Mechanism of AGV System)

  • 송준엽;이승우;김갑환
    • 한국정밀공학회지
    • /
    • 제18권2호
    • /
    • pp.132-139
    • /
    • 2001
  • In this research, we have developed a load/unload device capable of correcting the position automatically. Characteristic technologies such as compensation, control, guidance and communication have been modified and implemented on an existing electromagnetic guided AGV, helping to realize open system and distributed cooperation. We have applied the developed AGV with remote control and heterogeneous load/unload mechanisms in a machining system composed of various equipment such as machining centers, CMN and AS/RS and found that the AGV provided position error within $\pm$2mm.

  • PDF

A Study on Loading Arm Envelope and Alarm Setting according to Ship Movement

  • Choi, Byoung-Yeol;Jo, Hyo-Jae;Choi, Han-Sik;Choi, Dong-Eon
    • Journal of Advanced Research in Ocean Engineering
    • /
    • 제4권3호
    • /
    • pp.115-123
    • /
    • 2018
  • This study was carried using the new approach method to design appropriately the Loading Arm length and the alarm setting according to ship movements on Loading and Unloading marine Berth. The quasi-static mooring analysis was performed to estimate 110,000DWT ship's movements based on environmental conditions such as wind, current and wave. The mooring motion of the ship is very important to determine the loading arm scope, and in this case, the operation condition is performed on the ship without considering the damaged condition of the mooring line because the ship movement in case of damage is larger than intact, and all operations are stopped, the loading arm being released due to control system. From the result of mooring analysis, motion displacements, velocities and accelerations were simulated. They were used to simulate the maximum drifting speeds and distances. The maximum drifting speeds were checked to be satisfied within drifting speed limits. The total maximum drifting distances were simulated with alarm steps of the new approach method. Finally, the loading arm envelopes using the total maximum drifting distances were completed. Therefore, it was confirmed that the new approach method for loading arm envelopes and alarm settings was appropriate from the above results. In the future, it will be necessary to perform the further advanced dynamic mooring analysis instead of the quasi-static mooring analysis and to use the precise computer program analysis for various environments and ship movement conditions.