• 제목/요약/키워드: control Lyapunov function

검색결과 374건 처리시간 0.022초

Lyapunov 강인 안정성 조건을 이용한 강인 최적 뱅뱅 제어기 (Robust Optimal Bang-Bang Controller Using Lyapunov Robust Stability Condition)

  • 박영진;문석준;박윤식;임채욱
    • 제어로봇시스템학회논문지
    • /
    • 제12권5호
    • /
    • pp.411-418
    • /
    • 2006
  • There are mainly two types of bang-bang controllers for nominal linear time-invariant (LTI) system. Optimal bang-bang controller is designed based on optimal control theory and suboptimal bang-bang controller is obtained by using Lyapunov stability condition. In this paper, the suboptimal bang-bang control method is extended to LTI system involving both control input saturation and structured real parameter uncertainties by using Lyapunov robust stability condition. Two robust optimal bang-bang controllers are derived by minimizing the time derivative of Lyapunov function subjected to the limit of control input. The one is developed based on the classical quadratic stability(QS), and the other is developed based on the affine quadratic stability(AQS). And characteristics of the two controllers are compared. Especially, bounds of parameter uncertainties which theoretically guarantee robust stability of the two controllers are compared quantitatively for 1DOF vibrating system. Moreover, the validity of robust optimal bang-bang controller based on the AQS is shown through numerical simulations for this system.

Backstepping 방법을 이용한 IVHS에서의 차량군 리드 차량의 종렬제어기 설계 (Longitudinal Control of the Lead Vehicle of a Platoon in IVHS using Backstepping Method)

  • 박종호;정길도
    • 한국정밀공학회지
    • /
    • 제17권5호
    • /
    • pp.137-144
    • /
    • 2000
  • In this paper, a longitudinal control of the lead vehicle for a platoon in IVHS Regulation Layer is proposed. The backstepping method has been used for the controller design. This method has an advantage in that its stability need not be proven since the controller is designed based on the Lyapunov Function. The control object is that the lead vehicle tracks a reference velocity and maintains a safe distance between the inter-platoons while the followers are keeping the speed of the lead vehicle of a platoon. The coordinate of system is transformed to a new coordinate system for its convenience to design controller. The new coordinate system is composed of error and new error variable. The error is the difference between the safe distance and the actual distance of inter-platoons. A new error variable is the difference between the velocity of vehicle and the estimated state of a system operated by the virtual input. The Lyapunov function is obtained based on the variables of new coordinate system. In the computer simulation, several cases have been studied such as when the lead vehicle is tracking the optimal speed. or a lead vehicle of the following platoon tracks the velocity of the previous platoon while maintaining a safe distance. Also a nonlinear engine time constant case has been investigated. All the simulation results show that the designed controller satisfies the control object sufficiently.

  • PDF

Lyapunov 부등식을 이용한 페루프시스템의 주파수하중 제어기 차수축소 (Frequency Weighted Controller Reduction of Closed-Loop System Using Lyapunov Inequalities)

  • 오도창;정은태;이갑래;김종해;이상경
    • 제어로봇시스템학회논문지
    • /
    • 제7권6호
    • /
    • pp.465-470
    • /
    • 2001
  • This paper considers a new weighed model reduction method using block diagonal solutions of Lyapunov inequalities. With the input and/or output weighting function, the stability of the reduced order system is guaranteed and an a priori error bound is proposed. to achieve this after finding the solutions of two Lyapunov inequalities and balancing the full order system, we find the reduced order systems using the direct truncation and the singular perturbation approximation. The proposed method is compared with other existing methods using numerical examples.

  • PDF

구조물의 에너지를 고려한 LQR 및 ILQR제어기의 가중행렬 (Weighting Matrices of LQR and ILQR Controllers Considering Structural Energy)

  • 민경원;이영철;박민규
    • 한국지진공학회논문집
    • /
    • 제6권6호
    • /
    • pp.49-53
    • /
    • 2002
  • 가중행렬은 일반적인 최적 제어 설계에서 우선적으로 필요하지만 일반적으로 제어 설계자들 이 경험적 지식에 의존하고 있다. 이 논문은 구조물의 에너지를 고려한 최적제어기의 가중행렬을 결정하는 체계적인 절차를 제시하였다. 최적제어기는 LQR과 ILQR로 구분될 수 있다. 구조물의 총에너지를 고려한 Lyapunov 함수를 적용하고, 이로부터 유도된 식이 음수라는 상태를 이용하면 가중행렬을 어렵지 않게 구할 수 있다. 이러한 방법으로 산정된 가중행렬을 이용하여 LQR과 ILQR제어기를 설계하고 제어효율을 입증하였다.

2차의 리아프노프 함수에 의한 유연 조인트 로봇의 비선형 견실제어기 설계 (Nonlinear robust control design with quadratic Lyapunov function for robots with joint elasticity)

  • 김동환;이교일
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1996년도 한국자동제어학술회의논문집(국내학술편); 포항공과대학교, 포항; 24-26 Oct. 1996
    • /
    • pp.573-576
    • /
    • 1996
  • We propose robust control scheme for flexible joint manipulator in the presence of nonlinearity and mismatched uncertainty. The control is designed based on Lyapunov approach. The robust control which is based on the computed torque scheme and state transformation via implanted control is introduced. The design procedure starts with the construction of linearized subsystems via the computed torque method and then uses state transformation. With this approach we do not impose an upper-bound constraint on the inertia matrix in case it is known. Thus, this control can be applied to arbitrary manipulators. The resulting robust control guarantees practical stability for both the transformed system and the original system. The transformation is only based on the possible bound of uncertainty.

  • PDF

유연마디 로봇의 적응제어 (Adaptive Control of Flexible-Link Robots)

  • 이호훈;김현기
    • 대한기계학회논문집A
    • /
    • 제24권7호
    • /
    • pp.1689-1696
    • /
    • 2000
  • This paper proposes a new adaptive control scheme for flexible-link robots. A model-based nonlinear control scheme is designed based on a V-shape Lyapunov function, and then the nonlinear control i s extended to a model-based adaptive control to cope with parametric uncertainties in the dynamic model. The proposed control guarantees the global exponential or global asymptotic stability of the overall control system with all internal signals bounded. The effectiveness of the proposed control is shown by computer simulation.

Smart modified repetitive-control design for nonlinear structure with tuned mass damper

  • ZY Chen;Ruei-Yuan Wang;Yahui Meng;Timothy Chen
    • Steel and Composite Structures
    • /
    • 제46권1호
    • /
    • pp.107-114
    • /
    • 2023
  • A new intelligent adaptive control scheme was proposed that combines observer disturbance-based adaptive control and fuzzy adaptive control for a composite structure with a mass-adjustable damper. The most important advantage is that the control structures do not need to know the uncertainty limits and the interference effect is eliminated. Three adjustable parameters in LMI are used to control the gain of the 2D fuzzy control. Binary performance indices with weighted matrices are constructed to separately evaluate validation and training performance using the revalidation learning function. Determining the appropriate weight matrix balances control and learning efficiency and prevents large gains in control. It is proved that the stability of the control system can be ensured by a linear matrix theory of equality based on Lyapunov's theory. Simulation results show that the multilevel simulation approach combines accuracy with high computational efficiency. The M-TMD system, by slightly reducing critical joint load amplitudes, can significantly improve the overall response of an uncontrolled structure.

증기발생기 수위제어의 확률론적 안정성 (Nonlinear Stochastic Stability for Steam Generator Water Level Control System)

  • Park, You-Cho;Chung, Chang-Hyun;Oh, Je-Kyun
    • Nuclear Engineering and Technology
    • /
    • 제27권2호
    • /
    • pp.155-164
    • /
    • 1995
  • 증기발생기 수위조절계통의 무작위추출 비선형 제어계통의 경우로 연구되었다. 무작위 변수로는 시간불연속 계통의 추출시간간격 이 고려되었다. Lyapunov 함수를 구하지 않는 확률론적 Lyapunov 방법이 용되었다. 유도된 안정성 요건은 CANDU 형 원자로인 월성 1호기의 자료를 이용하여 시간 존속 모사로 검증하였다.

  • PDF

슬라이딩 모드 제어와 스위칭 기법에 기반한 수상함의 경로 추종 제어기 설계 (Path Tracking Controller Design for Surface Vessel Based on Sliding Mode Control Method with Switching Law)

  • 이준구
    • 한국군사과학기술학회지
    • /
    • 제20권1호
    • /
    • pp.108-118
    • /
    • 2017
  • In this paper, the path tracking controller for a surface vessel based on the sliding mode control (SMC) with the switching law is proposed. In order to have no restriction on movement and improved tracking performance, the proposed control system is developed as follows: First, the kinematic and dynamic models in Cartesian coordinates are considered to solve the singularity problem at the origin. Second, the new multiple sliding surfaces are designed with the SMC and approach angle concept to solve the under-actuated property. Third, the switching control system is designed to improve tracking performance. To prove the stability of the proposed switching system under the arbitrary switching, the Lyapunov stability analysis method with the common Lyapunov function is used. Finally, the computer simulations are performed to demonstrate the performance, effectiveness and stability of the proposed tracking controller of a surface vessel.

Highly Efficient Control of the Doubly Fed Induction Motor

  • Drid, Said;Makouf, Abdesslam;Nait-Said, Mohamed-Said;Tadjine, Mohamed
    • Journal of Electrical Engineering and Technology
    • /
    • 제2권4호
    • /
    • pp.478-484
    • /
    • 2007
  • This paper deals with the high efficient vector control for the reduction of copper losses of the doubly fed motor. Firstly, the feedback linearization control based on Lyapunov approach is employed to design the underlying controller achieving the double fluxes orientation. The fluxes# controllers are designed independently of the speed. The speed controller is designed using the Lyapunov method especially employed to the unknown load torques. The global asymptotic stability of the overall system is theoretically proven. Secondly, a new Torque Copper Losses Factor is proposed to deal with the problem of the machine copper losses. Its main function is to optimize the torque in keeping the machine saturation at an acceptable level. This leads to a reduction in machine currents and therefore their accompanied copper losses guaranteeing improved machine efficiency. The simulation and experimental results in comparative presentation confirm largely the effectiveness of the proposed DFIM control with a very interesting energy saving contribution.