• Title/Summary/Keyword: contrast flow

Search Result 486, Processing Time 0.036 seconds

An Analysis of Pattern of Transforaminal Epidurography (경추간공 경막외 조영술의 양상에 관한 분석)

  • Hong, Ji Hee
    • The Korean Journal of Pain
    • /
    • v.19 no.2
    • /
    • pp.175-180
    • /
    • 2006
  • Background: A transforaminal epidural steroid injection has been used for the treatment of radicular arm or leg pain, which has the advantage of ventral epidural spreading compared to either an interlaminar or caudal approach. However, several factors are known to affect the epidural spread pattern of contrast dye; therefore, the injected medication can not be delivered to the target site. The objective of our study was to observe any differences in the contrast flow patterns according to several factors. Methods: A total of 34 epidurographies in 29 patients, who underwent fluoroscopically guided transforaminal epidural steroid injections, were evaluated. After confirming the location of the needle tip within the anterior superior aspect of the neural foramen in the lateral view, and at the 6 o'clock position to the pedicle in the anteroposterior view, 2 ml of contrast dye was injected. The contrast flow patterns of ventral, ventral and dorsal, and dorsal epidural filling were analyzed, according to age, gender, magnetic resonance imaging finding and history of previous back surgery. Results: Ventral contrast flow occurred in 30 out of the 34 epidurographies (88%). Both ventral and dorsal contrast flow patterns were observed 13 out of 16 (81%) patients in the older age group. Also, both ventral and dorsal contrast flow patterns were observed in 16 out of 18 (88%) patients with spinal stenosis. Conclusions: Transforaminal epidural steroid injections, performed uner fluoroscopy, provide excellent nerve root filling and ventral epidural spreading. Patients with spinal stenosis or an old age have both ventral and dorsal epidural spreading patterns.

Measurement of Flow Velocity and Flow Visualization with MR PC Image (MR PC 영상을 이용한 유체 흐름 분석)

  • Kim, S.J.;Lee, D.H.;Min, B.G.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1997 no.05
    • /
    • pp.127-130
    • /
    • 1997
  • Phase-contrast(PC) methods have been used for quantitative measurements of velocity and volume flow rate. In addition, phase contrast cine magnetic resonance imaging (MRI) combines the flow dependent contrast of PC MRI with the ability of cardiac cine imaging to produce images throughout the cardiac cycle. In this method, the through-plane velocity has been encoded generally. However, the accuracy of the flow data can be reduced by the effect of flow direction, finite slice thickness, resolution, pulsatile flow pattern, and so on. In this study we calculated the error caused by misalignment of tomographic plane and flow directon. To reduce this error and encode the velocity for more complex flow, we suggested 3 directional velocity encoding method.

  • PDF

Contralateral Heating Effects of Contrast Bath and Warm Bath (대조욕과 온열욕의 교차성 열효과)

  • Kim, Young-Man;Park, So-Yeon;Choi, Houng-Sik;Kwon, Oh-Yun
    • Physical Therapy Korea
    • /
    • v.3 no.2
    • /
    • pp.49-54
    • /
    • 1996
  • The purposes of this study were to measure skin temperature and blood flow on the contralateral upper extremity when heat is applied to one upper extremity, were to compare the effect of contrast bath. The subjects were 38 healthy adults with no history of peripheral vascular disease. The subjects of contrast bath were 18 persons and the subjects of warm bath were 20 persons. The subjects of one group were seated with their right arm in water($42^{\circ}C$) up to the mid-forearm. The subjects of the other group were seated with their right arm up to the mid-forearm in water which was changed from warm to cold using the contrast bath technique. The continually changing temperatures and blood flow were measured by an independent observer at intervals of 10, 15, 20, 25 and 30 minutes respectively after the start of the procedure. The results were as follows. The temperature of the warm bath group rose 4.28% over the pre-experimental temperatures and the temperature of the contrast bath group rose 3.41%. There was no statistically significant difference between the two groups. The blood flow of the warm bath group rose 8.31% over the pre-experimental blood flow and the blood flow of the contrast bath group rose 17.24%. There was a statistically significant between the two groups 20 minutes after the start of the procedure. Thus the contrast bath is a more effective method than the warm bath to increase blood flow.

  • PDF

Phase Dependent Image Contrast Enhancement in MRI

  • Y.M Ro;C. W. Mun;I. K. Hong
    • Journal of Biomedical Engineering Research
    • /
    • v.20 no.2
    • /
    • pp.165-172
    • /
    • 1999
  • An enhancement technique for phase dependent image contrast in MRI(Manetic Resonance Imaging) is proposed. Because the method can enhance inherent phase contrast it is suited for susceptibility imaging and flow imaging where intravoxel phase is a source of image contrast. In this paper, applying external phase in the voxel enhances phase contrast. The external phase is generated by a tailored RF pulse so that one can control the phase contrast and even produces phase only contrast. Signal intensity due to both inherent phase and external phase is analyzed and the proposed technique is applied to a susceptibility effect only imaging and a flow effect only imaging. To verify the proposed technique, computer simulations are performed and their results are given.

  • PDF

Laser Speckle Contrast Imaging for Measuring Cerebral Blood Flow Changes Caused by Electrical Sensory Stimulation

  • Cho, Ahra;Yeon, Chanmi;Kim, Donghyeon;Chung, Euiheon
    • Journal of the Optical Society of Korea
    • /
    • v.20 no.1
    • /
    • pp.88-93
    • /
    • 2016
  • Recently laser speckle contrast (LSC) imaging has become a widely used optical method for in vivo assessment of blood flow in the animal brain. LSC imaging is useful for monitoring brain hemodynamics with relatively high spatio-temporal resolution. A speckle contrast imaging system has been implemented with electrical sensory stimulation apparatus. LSC imaging is combined with optical intrinsic signal imaging in order to measure changes in cerebral blood flow as well as neural activity in response to electrical sensory stimulation applied to the hindlimb region of the mouse brain. We found that blood flow and oxygen consumption are correlated and both sides of hindlimb activation regions are symmetrically located. This apparatus could be used to monitor spatial or temporal responses of cerebral blood flow in animal disease models such as ischemic stroke or cortical spreading depression.

A study of calculate a time to peak enhancement of contrast level by using blood flow (혈류에 의한 조영제 peak time의 산출에 관한 연구)

  • Choi, Kwan-Woo;Son, Soon-Yong;Lee, Ho-Beom
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.5
    • /
    • pp.2315-2321
    • /
    • 2013
  • This study attempt to develope and suggest a new, minimize side effects process for calculate a time to peak enhancement of contrast level by using blood flow instead of current mathematical process. We conducted a studies 127 patients who performed the CE MRA by using test-contrast inject way. We used measurements of a contrast inflow time and time to peak enhancement of contrast level of each cerebrovascular branch for similarity of witch cerebrovascular branch calculate a time to peak enhancement of contrast level by using blood flow in image compared with calculation a time to peak enhancement of contrast level by using current mathematical process after contrast enhancement. In this study, confidence interval were used if the variable is continuous variable; there is differences between 4 groups exist but in group 1, there is no difference with time in peak enhancement of contrast level by using mathematical method to inflow time in sinus sigmoideus. it was significant statistically, in addition there was significant low heterogeneity in Bland Altman plot. Thus, apply a new calculate a time to peak enhancement of contrast level by using blood flow method will minimize damage caused by side effect, maintain quality of image, easy and fast access. It should provide a space for the exchange of current calculate a time to peak enhancement of contrast level by using mathematical process.

The Correlation between Caudal Epidurogram and Low Back Pain

  • Jo, Dae-Hyun;Jang, Sul
    • The Korean Journal of Pain
    • /
    • v.25 no.1
    • /
    • pp.22-27
    • /
    • 2012
  • Background: The common causes of lower back pain with or without leg pain includes disk disease and spinal stenosis. A definitive diagnosis is usually made by means of magnetic resonance imaging (MRI), but treatment is often difficult because the MRI findings are not consistent with the symptoms of the patient in many cases. The objective of this study was to observe the correlation between the patterns of epidurography performed in patients having lower back pain with or without leg pain and the position or severity of the pain as subjectively described by the patients. Methods: The subjects of this study were 69 outpatients with lower back pain with or without leg pain who visited our clinic and complained of predominant pain on one side. We performed caudal epidural block using an image intensifier. A mixture of the therapeutic drug and the contrast agent (10 ml) was injected to observe the contrast flow pattern. The patients who complained of predominant pain on one side were divided into the left side group and the right side group. A judgment of inconsistency was made if the contrast agent flowed to the side of the pain, while a judgment of consistency was made if the contrast agent flowed to the opposite side of the pain. The degree of the drug distribution was evaluated by counting the number of cells to which the contrast agent's flowed for evaluating the correlation between the contrasted cell and the severity of pain (one group ${\leq}$ VAS 7, the other group ${\geq}$ VAS 8) the degree of the contrast agent's contrast was evaluated by dividing and counting an image into 15 cells (the left, right, and middle sections at each level of L4, L5, S1, S2, and S3). Results: Thirty out of the 69 patients who had laterality in pain, that is, those who complained of predominant pain on one side, showed that the laterality of the pain and the contrast agent flow was consistent, while 39 patients showed that the laterality was inconsistent (P: 0.137). The evaluation of the correlation between the pain and the contrast agent flow showed that the mean number of contrasted cells was $9.0{\pm}2.2$ for the 46 patients in the group with a VAS of 7 or lower and $6.5{\pm}2.0$ for the 23 patients in the group with a VAS of 8 or higher, indicating that the former group showed a significantly greater number of contrasted cells (P < 0.001). Conclusions: This study, conducted with patients having lower back pain with or without leg pain, showed that the contrast flow pattern of caudal epidurography had a significant correlation with the severity of the pain but not with the laterality of the pain.

CT characteristics of normal canine pulmonary arteries and evaluation of optimal contrast delivery methods in CT pulmonary angiography

  • Jung, Joohyun;Chang, Jinhwa;Yoon, Junghee;Choi, Mincheol
    • Korean Journal of Veterinary Research
    • /
    • v.47 no.2
    • /
    • pp.247-254
    • /
    • 2007
  • This study was performed to identify the normal anatomic orientation of pulmonary arteries and to obtain the normal baseline parameters and the optimal contrast material delivery methods of computed tomographic pulmonary angiography (CTPA) on normal beagle dogs. Based on the contrast injection flow rate, the contrast volume, and the administration methods, the experimental groups were divided into 4 groups such as group 1 : 2 ml/s, 3 ml/kg, and monophasic administration; group 2 : 5 ml/s, 3 ml/kg, and monophasic administration; group 3 : 5 ml/s, 4 ml/kg, and monophasic administration; group 4 : 5 ml/s and 2 ml/kg in first phase, 0.3 ml/s and 2 ml/kg in second phase, as biphasic administration. Normal anatomic orientation of pulmonary arteries in CTPA was evaluated through reformatted and 3D images after retro-reconstruction. Normal parameters for great arteries and peripheral pulmonary arteries were obtained on the factor of basement hounsfield unit (HU) values, contrast enhanced HU values, delay time, and peak time. And the optimal contrast delivery methods were evaluated on the factor of contrast enhanced HU values, image quality, and artifact. The monophasic administration with 5 ml/s contrast injection flow rate and 3 ml/kg contrast volume was optimal in canine CTPA.

X-ray PIV Measurements of Velocity Field of Blood Flows

  • Lee, Sang-Joon;Kim, Guk-Bae
    • 순환기질환의공학회:학술대회논문집
    • /
    • 2006.04a
    • /
    • pp.28-36
    • /
    • 2006
  • The x-ray PIV method was improved for measuring quantitative velocity fields of real blood flows using a coherent synchrotron x-ray source. Without using any contrast media or seeding particles, this method can visualize flow pattern of blood by enhancing the phase-contrast and interference characteristics of blood cells based on a synchrotron x-ray imaging mechanism. The enhanced x-ray images were achieved by optimizing the sample-to-scintillator distance, the sample thickness, and hematocrit. The quantitative velocity fields of blood flows inside opaque tubes were obtained by applying a 2-frame PIV algorithm to the x-ray images of the blood flows. The measured velocity field data show typical features of blood flows such as the yield stress effect. The non-Newtonian flow characteristics of blood flows were analyzed using the x-ray PIV method and the experimental results were compared with hemodynamic models.

  • PDF

X-ray PIV Measurements of Velocity Field of Blood Flows

  • Lee, Sang-Joon;Kim, Guk-Bae
    • International Journal of Vascular Biomedical Engineering
    • /
    • v.4 no.1
    • /
    • pp.1-8
    • /
    • 2006
  • The x-ray PIV method was improved for measuring quantitative velocity fields of real blood flows using a coherent synchrotron x-ray source. Without using any contrast media or seeding particles, this method can visualize flow pattern of blood by enhancing the phase-contrast and interference characteristics of blood cells based on a synchrotron x-ray imaging mechanism. The enhanced x-ray images were achieved by optimizing the sample-to-scintillator distance, the sample thickness, and hematocrit. The quantitative velocity fields of blood flows inside opaque tubes were obtained by applying a 2-frame PIV algorithm to the x-ray images of the blood flows. The measured velocity field data show typical features of blood flows such as the yield stress effect. The non-Newtonian flow characteristics of blood flows were analyzed using the x-ray PIV method and the experimental results were compared with hemodynamic models.

  • PDF