• Title/Summary/Keyword: contour error

Search Result 181, Processing Time 0.029 seconds

The efficiency analysis of TIN construction considering DEM standard error (DEM 표준오차를 고려한 TIN 구축의 효용성 분석에 관한 연구)

  • 이근상;채효석;조기성
    • Spatial Information Research
    • /
    • v.11 no.1
    • /
    • pp.23-32
    • /
    • 2003
  • TIN is applied in pondage calculation and topography analysis. And much processing time and storage capacity are needed because TIN contains information as elevation, slope and aspect. In the construction of TIN using contour, weed tolerance that is used for the simplification of line is influenced on the sampling distance of contour. The processing time and storage capacity of TIN are calculated in according to the weed tolerance of various size in this research. And we estimated OEMs standard error that is created from TIN to present reasonable weed tolerance and decided the size of weed tolerance that satisfy DEM standard error. We got TINs weed tolerance that satisfy DEM standard error(5m) was 70m and DEMs resolution is 20m as estimation result.

  • PDF

External Force Control for Two Dimensional Contour Following ; Part 1. A Linear Control Approach

  • Park, Young-Chil;Kim, Sungkwun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10b
    • /
    • pp.130-134
    • /
    • 1992
  • The ability of a robot system to comply to an environment via the control of tool-environment interaction force is of vital for the successful task accomplishment in many robot application. This paper presents the implementation of external force control for two dimensional contour following task using a commercial robot system. Force accommodation is used since a constraint imposed in our work is not to modify the commercial robot system. A linear, decoupled model of two dimensional contour following system in the discrete time domain is derived first. Then the experimental verification of linear control is obtained using a PUMA 560 manipulator with standard Unimation controller, Astek FS6-120A six axis wrist force sensor attached externally to the arm and LSI-11173 microcomputer. Experimentally obtained data shows that the RMS contact force error is 0.8246 N when following the straight edge and 2.3768 N when following 40 mm radius curved contour.

  • PDF

Comparison of Active Contour and Active Shape Approaches for Corpus Callosum Segmentation

  • Adiya, Enkhbolor;Izmantoko, Yonny S.;Choi, Heung-Kook
    • Journal of Korea Multimedia Society
    • /
    • v.16 no.9
    • /
    • pp.1018-1030
    • /
    • 2013
  • The corpus callosum is the largest connective structure in the brain, and its shape and size are correlated to sex, age, brain growth and degeneration, handedness, musical ability, and neurological diseases. Manually segmenting the corpus callosum from brain magnetic resonance (MR) image is time consuming, error prone, and operator dependent. In this paper, two semi-automatic segmentation methods are present: the active contour model-based approach and the active shape model-based approach. We tested these methods on an MR image of the human brain and found that the active contour approach had better segmentation accuracy but was slower than the active shape approach.

Asymmetrical Contouring Control of Biaxial System (2축 시스템의 비대칭 윤곽제어)

  • 이건복;심영복;정유철
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.11a
    • /
    • pp.277-282
    • /
    • 1996
  • An asymmetrical cross-coupled compensator to improve the contouring performance is proposed. This is a refinement of the structure suggested by Koren. The position loop is closed with a proportional controller as in the uncoupled system. An additional input term proportional to the component of the contour error along the corresponding axis Is included. The controller gains are chosen to give an appropriate frequency response and an optimum range for the damping ratio. The effectiveness of the proposed controller is studied by means of digital simulations of the dynamics of the drives and the controller for 3 types of command trajectories; straight line contour, cornering contour, circular contour. Substantial improvement in contouring performance is obtained for a range of contouring conditions.

  • PDF

A computational algorithm for F0 contour generation in Korean developed with prosodically labeled databases using K-ToBI system (K-ToBI 기호에 준한 F0 곡선 생성 알고리듬)

  • Lee YongJu;Lee Sook-hyang;Kim Jong-Jin;Go Hyeon-Ju;Kim Yeong-Il;Kim Sang-Hun;Lee Jeong-Cheol
    • MALSORI
    • /
    • no.35_36
    • /
    • pp.131-143
    • /
    • 1998
  • This study describes an algorithm for the F0 contour generation system for Korean sentences and its evaluation results. 400 K-ToBI labeled utterances were used which were read by one male and one female announcers. F0 contour generation system uses two classification trees for prediction of K-ToBI labels for input text and 11 regression trees for prediction of F0 values for the labels. Evaluation results of the system showed 77.2% prediction accuracy for prediction of IP boundaries and 72.0% prediction accuracy for AP boundaries. Information of voicing and duration of the segments was not changed for F0 contour generation and its evaluation. Evaluation results showed 23.5Hz RMS error and 0.55 correlation coefficient in F0 generation experiment using labelling information from the original speech data.

  • PDF

Tracking Control of Servo System using Fuzzy Logic Cross Coupled Controller (퍼지 논리형 상호결합 제어기를 이용한 서보 시스템의 추적제어)

  • 신두진;허욱열
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.50 no.8
    • /
    • pp.361-366
    • /
    • 2001
  • This thesis proposes a fuzzy logic cross coupled controller for a multi axis servo system. The overall control system consists of three elements: the axial position controller, the speed controller, and a fuzzy logic cross coupled controller. In conventional multi axis servo system, the motion of each axis is controlled independently without regard to the motion of other axes, in which the contour error, defined as the shortest distance between the desired and actual contours is compensated only by the position error of each axis. This decoupled control approach may result in degraded contouring performance due to such factors as mismatch of axial dynamics and axial loop gains. In practice, such systems contain many uncertainties, Therefore, the multi axis servo system must receive and evaluate the motion of all axes for a better contouring accuracy. Cross coupled controller utilizes all axis position error information simultaneously to produce accurate contours. However the existing cross coupled controllers cannot overcome friction, backlash and parameter variation. Also, since it is difficult to obtain an accurate mathematical model of multi axis system, here we investigate a fuzzy logic cross coupled controller method. Some simulations and experimental results are presented to illustrate the performance of the proposed controller.

  • PDF

An Improved Subfield Method for PDP Employing a Constant Slope Code (기울기가 일정한 코드를 사용한 개선된 PDP용 subfield 기법)

  • Lee, Young-Sam;Kim, Rin-Chul;Lee, Byung-Uk
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.39 no.5
    • /
    • pp.504-512
    • /
    • 2002
  • This paper presents a new subfield method that can alleviate the visual artifact called the dynamic false contour (DFC), which occurs on plasma display panels. Nothing that the DFC is caused by the difference of time intervals between the adjacent subfields, we propose a constant slope code, in which the differences are maintained to be constant. Also, we propose a subfield code that can minimize the mean absolute error, considering the trade-off between the peak magnitude of the error and its duration. We will show that the proposed subfield method maintains an adequate performance in the view point of the human visual system, since the bound of the errors increases with the gray scale.

Equalizing pulse with error diffusion technique using Look-up-Table and subfield pattern for reducing dynamic false contour

  • Seo, Ki-Ho;Whang, Ki-Woong
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2003.07a
    • /
    • pp.321-324
    • /
    • 2003
  • We reported the method for the relatively simple equalizing pulse to reduce dynamic false contour. Equalizing pulse is determined by look-up-table and moving direction and velocity of the image. Used lookup-table is a few. If image moves to right or left, necessary LUT is only one for the velocity of 1 pixel/tvfield to right or left. This technique makes the process simple after obtaining motion information.

  • PDF