• Title/Summary/Keyword: contour error

Search Result 181, Processing Time 0.021 seconds

Adaptive Cross-Coupling Control for High-Speed Nonlinear Contour Machining (고속의 비선형 윤곽가공을 위한 적응 교차축 연동제어)

  • Lee, Yong-Seok;Jee, Sung-Chul
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.11
    • /
    • pp.108-114
    • /
    • 2000
  • In this paper, a new adaptive cross-coupling control(CCC) method with an improved contour error model is proposed to maintain contouring precision in high-speed nonlinear contour machining. The proposed method utilizes variable controller gains based on the instantaneous curvature of a contour and the feedrate command. The proposed method is evaluated and compared with the conventional CCC for nonlinear contouring motion through computer simulations. The simulation results show that the proposed CCC improves the contouring accuracy more effectively than the existing method.

  • PDF

A new method of contour error modeling for cross-coupled control of CNC machines (CNC 공작 기계의 상호 결합 제어를 위한 새로운 윤곽 오차 모델링 방법)

  • Joo, Jeong-Hong;Lee, Hyun-Chul;Lee, Yun-Jung;Jeon, Gi-Joon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.3 no.4
    • /
    • pp.389-397
    • /
    • 1997
  • In this paper, we propose a new method of contour error modeling for cross-coupled control of CNC machines. This modeling method is based on the information that the interpolator of a CNC machine generates knot points per each sampling time in order to approximate a given curved path as a series of small straight-line segments. The merits of the proposed method are : (1) its applicability for arbitrary curved contours and (2) its ability to calculate contour errors more accurately than the other conventional methods. The proposed method is evaluated and compared with the conventional methods using the three typical curved trajectories by computer simulations. Furthermore, it is shown that the cross-coupled controller based on this proposed error model improves contouring accuracy more effectively than the other methods.

  • PDF

A Controller Design Using Error Model for Line Type Paths in Machine Tool (공작기계의 선형경로에 대한 오차모델을 이용한 제어기 설계)

  • 길형균;이건복
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2004.04a
    • /
    • pp.64-69
    • /
    • 2004
  • The work presented here deals with controller design using error model constructed with proportional control ramp response. The design aims at the improvement of transient response, steady-state error reduction with stability preservation, generation of the consistent contour error through the proportional gain regulation of a mismatched system. The first step is to generate tracking-error curve with proportional control only and decide the added error signal shape on the error curve. The next is to construct a table for the steady-state loop gain with step input. The table is used for selecting the proportional gain. The effectiveness of the proposed controller is confirmed through the simulation and experiment.

  • PDF

Comparison and Evaluation on DEM Error by the Resolution of Airborne Laser Scanning Data (항공레이저 측량 자료의 해상도에 따른 DEM 오차 비교평가 연구)

  • Lee, Geun-Sang;Koh, Deuk-Koo;Chae, Hyo-Seok;Shin, Young-Ho
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.6 no.3
    • /
    • pp.33-42
    • /
    • 2003
  • As airborne laser scanning technique is developed with high vertical accuracy recently, there come many studies on DEM(digital elevation model creation, building extraction, flood risk mapping and 3D virtual city modeling. This study applied point comparative method, contour comparative method and digital map with scale 1/5,000 to calculate RMSE of DEM in according to resolution that was constructed using rawdata being acquired by airborne laser scanning. As a result, point comparative method showed lower DEM standard error than contour comparative method, it is a reason that contour comparative method was not carried out detailed grid calculation for point comparative method. Also, digital map with scale 1/5,000 showed higher DEM standard error than point comparative method and contour comparative method in below 25.4m that is average horizontal distance among contour line, and showed similar result with contour comparative method in over 25.4m.

  • PDF

Real time Image Processor for Reproduction of Gray Levels in Dark Areas on Plasma Display Panel (PDP) (플라즈마 디스플레이 패널의 어두운 영역에서의 계조 재현을 위한 실시간 영상처리기)

  • Lee, Chang-Hun;Park, Seung-Ho;Gang, Jin-Gu;Kim, Chun-U
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.51 no.1
    • /
    • pp.46-54
    • /
    • 2002
  • Plasma Display Panel (PDP) is required to be both the determination of white point of each gray level and the inverse gamma correction since no-balanced RGB cell and linear property of PDP, respectively. However, these two methods cause degradation of grey level representation and undesirable false contour in the dark areas on PDP. In this paper, we implemented real time image processor of the proposed error diffusion algorithm and unsharp masking operation to protect the blurring image caused by the error diffusion. Experimental results showed drastic improvements of gray level representation and reduction of undesirable false contour.

FEM Analysis of Plasticity-induced Error on Measurement of Welding Residual Stress by the Contour Method

  • Shin, Shang-Hyon
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.10
    • /
    • pp.1885-1890
    • /
    • 2005
  • The contour method relies on deformations that occur when a residually stressed component is cut along a plane. The method is based on the elastic superposition principle. When plasticity is involved in the relaxation process, stress error in the resulting measurement of residual stress would be caused. During the cutting the specimen is constrained at a location along the cut so that deformations are restrained as much as possible during cutting. With proper selection of the constraining location the plasticity effect can also be minimized. Typical patterns of longitudinal welding residual stress state were taken to assess the plasticity effect along with constraining locations.

The prediction of ventilated supercavitation shapes according to the angle of attack of a circular cavitator (원형 캐비테이터의 받음각에 따른 환기초공동 형상 예측 연구)

  • Yi, Jong-Ju;Kim, Min-Jae;Paik, Bu-Geun;Kim, Kyung Chun
    • Journal of the Korean Society of Visualization
    • /
    • v.19 no.3
    • /
    • pp.22-30
    • /
    • 2021
  • Ventilated cavity shapes by varying angle of attack of a circular cavitator were predicted based on Logvinovich's Independence Principle in order to verify the cavity shape prediction method. The prediction results were compared with model experiments conducted in the high-speed cavitation tunnel. In the prediction of the cavity centerline, the movement of the cavity centerline due to the effect of gravity and cavitator's angle of attack were well predicted. In the prediction of the cavity contour, it was found that the cavity edge prediction error increased as the angle of attack increased. The error of the upper cavity contour was small at the positive angle of attack, and the error of the lower cavity contour was small at the negative angle of attack.

A contour coding algorithm using DST

  • Kim, Jong-Lak;Kim, Jin-Hum;Park, Choong-Soo;Kim, Han-Soo
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 1996.06b
    • /
    • pp.61-66
    • /
    • 1996
  • In this paper, an efficient contour coding algorithm incorporating polygonal approximation and discrete sine transform is introduced. Contour information is inevitable in content based coding, and polygonal approximation method is widely used to compress the contour information. However polygonal approximation method is not suitable when fine contour is needed. We show that the error signal of polygonal approximation can be efficiently represented using DST, that is, the contour information can be represented accurately with polygons and DST coefficients. With this contour coding scheme, the required bits to represent a contour can be reduced by about 40-50% with virtually no degradation compared to the existing chain coding method.

  • PDF

A Neuro-contouring controller for High-precision CNC Machine Tools (고정밀 CNC 머신을 위한 신경망 윤과제어)

  • 이현철;주정홍;전기준
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.7 no.5
    • /
    • pp.1-7
    • /
    • 1997
  • In this paper, a neuro-contouring control scheme for the high precision machining of CNC machine tools is descrihed. The proposed control system consists of a conventional controller for each axis and an additional neuro-controller. For contouring control, the contour error must be computed during realtime motion, but generally the contour error for nonlinear contours is difficult to he directly computed. We, therefore, propose a new contour error model to approximate real error more exactly, and here we also introduce a cost function for better contouring performance and derive a learning law to adjust the weights of the neuro-controller. The derived learning law guarantees good contouring performance. Usefulness of the proposed control scheme is demonstrated hy computer simulations.

  • PDF

A Two-Step Vertex Selection Method for Minimizing Polygonal Approximation Error (다각형 근사 오차를 최소화하기 위한 2단계 정점 선택 기법)

  • 윤병주;이훈철;고윤호;이시웅;김성대
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.40 no.6
    • /
    • pp.114-123
    • /
    • 2003
  • The current paper proposes a new vertex selection scheme for polygon-based contour coding. To efficiently characterize the shape of an object, we incorporate the curvature information in addition to the conventional maximum distance criterion in vertex selection process. The proposed method consists of "two-step procedure." At first, contour pixels of high curvature value are selected as key vortices based on the curvature scale space (CSS), thereby dividing an overall contour into several contour-segments. Each segment is considered as an open contour whose end points are two consecutive key vortices and is processed independently. In the second step, vertices for each contour segment are selected using progressive vertex selection (PVS) method in order to obtain minimum number of vertices under the given maximum distance criterion ( $D_{max}$$^{*}$). Furthermore, the obtained vortices are adjusted using the dynamic programming (DP) technique to optimal positions in the error area sense. Experimental results are presented to compare the approximation performances of the proposed and conventional methods.imation performances of the proposed and conventional methods.