• Title/Summary/Keyword: continuum

Search Result 1,374, Processing Time 0.029 seconds

Study of 4π Compton Suppression Spectrometer by Monte Carlo Simulation (몬테카를로 시뮬레이션을 통한 4π 컴프턴 억제 분광기 연구)

  • Jang, Eun-Sung;Lee, Hyo-Yeong
    • Journal of the Korean Society of Radiology
    • /
    • v.11 no.3
    • /
    • pp.123-129
    • /
    • 2017
  • Compton suppression apparatus using the Compton scattering response, by inhibiting part of the spectrum Compton continuum Compton continuum in the area of the peak analysis of the gamma rays that enables a clearer device. In order to find out the geometry structure of high-purity germanium detector(HPGe) -NaI(TI) and to optimize the effect of movement, Monte Carlo simulation was used to grasp the behavioral characteristics of Compton suppression and compare several layout structures. And applied to the cylinder beaker used for the environmental measurement by using the efficiency according to the distance. For the low-energy source such as 81 keV, the Compton continuum is scarcely developed and the suppression effect is also insignificant because the scattering cross-section of the Compton effect is relatively low. In the spectrum for the remaining energy, it can be seen that the Compton continuum part is suppressed in a certain energy range. Compton suppression effect was not significantly different from positional shift. average reduction factor(ARF) value was about 1.08 for 81 keV and about 1.23 for 1332.4keV energy at the highest value. It can be seen that suppression over the Compton continuum region of the energy spectrum is a more appropriate arrangement. Therefore, it can be applied to various environmental sample measurement through optimized structure.

Noise Band Elemination of Hyperion Image using Fractal Dimension and Continuum Removal Method (프랙탈 차원 및 Continuum Removal 기법을 이용한 Hyperion 영상의 노이즈 밴드 제거)

  • Chang, An-Jin;Kim, Yong-Il
    • Korean Journal of Remote Sensing
    • /
    • v.24 no.2
    • /
    • pp.125-131
    • /
    • 2008
  • Hyperspectral imaging is used in a wide variety of research since the image is obtained with a wider wavelength range and more bands than multispectral imaging. However, there are limitations, namely that each band has a shorter wavelength range, the computation cost is increased in the case of numerous bands, and a high correlation between each band and noise bands exists. The previous analysis method does not produce ideal results due to these limitations. Therefore, in the case of using the hyperspectral image, image analysis after eliminating noise bands is more accurate and efficient. In this study, noise band elimination of the hyperspectral image preprocessing is highlighted, and we use fractal dimension for noise band elimination. The Triangular Prism Method is used, being the typical fractal dimension method of the curved surface. The fractal dimension of each band is calculated. We then apply the Continuum Removal method to normalize. A total of 35 bands are estimated by noise band with a threshold value that is obtained empirically. The hyperion hyperstpectral image collected on the EO-1 satellite is used in this study. The result delineates that noise bands of the hyperion image are able to be eliminated with the fractal dimension and Continuum Removal method.

Numerical Fatigue Test Method of Welded Structures Based on Continuum Damage Mechanics (연속체 손상역학을 이용한 용접구조물의 수치피로시험기법)

  • Lee, Chi-Seung;Kim, Young-Hwan;Kim, Tae-Woo;Yoo, Byung-Moon;Lee, Jae-Myung
    • Journal of Welding and Joining
    • /
    • v.26 no.3
    • /
    • pp.67-73
    • /
    • 2008
  • Fatigue life evaluation of welded structures in a range of high cycles is one of the most difficult problems since extremely small plastic deformation and damage occur during the loading cycles. Moreover, it is very difficult to identify the strong non-linearities of welding, inducing residual stress. In this paper, numerical fatigue test method for welded structures was developed using continuum damage mechanics with inherent strain. Recently, continuum damage mechanics, which can simulate both crack initiation at the micro-scale level and crack propagation at the meso-scale level, has been adopted in the fracture related problem. In order to consider the residual stresses in the welded strictures, damage calculation in conjunction with welding, inducing inherent strain, was proposed. The numerical results obtained from the damage calculation were compared to experimental results.

Damage detection technique for irregular continuum structures using wavelet transform and fuzzy inference system optimized by particle swarm optimization

  • Hamidian, Davood;Salajegheh, Eysa;Salajegheh, Javad
    • Structural Engineering and Mechanics
    • /
    • v.67 no.5
    • /
    • pp.457-464
    • /
    • 2018
  • This paper presents a method for detecting damage in irregular 2D and 3D continuum structures based on combination of wavelet transform (WT) with fuzzy inference system (FIS) and particle swarm optimization (PSO). Many damage detection methods study regular structures. This method studies irregular structures and doesn't need response of healthy structures. First the damaged structure is analyzed with finite element methods, and damage response is obtained at the finite element points that have irregular distance, secondly the FIS, which is optimized by PSO is used to obtain responses at points, having equal distance by response at those points that previously obtained by the finite element methods. Then a 2D (for 2D continuum structures) or a 3D (for 3D continuum structures) matrix is performed by equal distance point response. Thirdly, by applying 2D or 3D wavelet transform on 2D or 3D matrix that previously obtained by FIS detail matrix coefficient of WT is obtained. It is shown that detail matrix coefficient can determine the damage zone of the structure by perturbation in the damaged area. In order to illustrate the capability of proposed method some examples are considered.

Tracing the earliest phases of star formation: A pilot survey of Planck Cold Clumps

  • Yi, Hee-Weon;Lee, Jeong-Eun;Liu, Tie;Kim, Kee-Tae;Wu, Yuefang
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.40 no.2
    • /
    • pp.54.1-54.1
    • /
    • 2015
  • We observed 38 Planck Cold Clumps (PCCs) in the $850{\mu}m$ dust continuum emission using the JCMT/SCUBA-2, and detected the emission in 15 clumps containing dense cores. In this poster we present the preliminary results. The PCCs are cold, dense, and thus, they are considered as objects in the early evolutionary stages of star formation. The sources in our sample were selected based on the Purple Mountain Observatory (PMO) 13CO (1-0) integrated intensity maps. In order to examine whether these cores detected in $850{\mu}m$ continuum have potential to be prestellar cores, we compare each core mass estimated from the $850{\mu}m$ continuum with the Virial mass and Bonnor-Ebert (BE) mass calculated from the 13CO (1-0) or C18O (1-0) spectra. By comparing the two column densities from the dust continuum and the 13CO (1-0) or C18O (1-0) line, we also derive the CO depletion factor, which could be an indicator of core evolution. The moment maps of the 13CO (1-0) line are used to study the physical properties (e.g. kinematics, turbulence) of PCCs. We investigate difference between the sources with and without detectable $850{\mu}m$ emission to study the formation conditions of dense cores.

  • PDF

Perceptual Boundary on a Synthesized Korean Vowel /o/-/u/ Continuum by Chinese Learners of Korean Language (/오/-/우/ 합성모음 연속체에 대한 중국인 한국어 학습자의 청지각적 경계)

  • Yun, Jihyeon;Kim, EunKyung;Seong, Cheoljae
    • Phonetics and Speech Sciences
    • /
    • v.7 no.4
    • /
    • pp.111-121
    • /
    • 2015
  • The present study examines the auditory boundary between Korean /o/ and /u/ on a synthesized vowel continuum by Chinese learners of Korean language. Preceding researches reported that the Chinese learners have difficulty pronouncing Korean monophthongs /o/ and /u/. In this experiment, a nine-step continuum was resynthesized using Praat from a vowel token from a recording of a male announcer who produced it in isolated form. F1 and F2 were synchronously shifted in equal steps in qtone (quarter tone), while F3 and F4 values were held constant for the entire stimuli. A forced choice identification task was performed by the advanced learners who speak Mandarin Chinese as their native language. Their experiment data were compared to a Korean native group. ROC (Receiver Operating Characteristic) analysis and logistic regression were performed to estimate the perceptual boundary. The result indicated the learner group has a different auditory criterion on the continuum from the Korean native group. This suggests that more importance should be placed on hearing and listening training in order to acquire the phoneme categories of the two vowels.

ADMISSIBILITY AND CONNECTEDNESS IM KLEINEN IN HYPERSPACES

  • Baik, Bong Shin;Rhee, Choon Jai
    • Honam Mathematical Journal
    • /
    • v.36 no.4
    • /
    • pp.913-919
    • /
    • 2014
  • We investigate the relationships between the space X and the hyperspaces concerning admissibility and connectedness im kleinen. The following results are obtained: Let X be a Hausdorff continuum, and let A, $B{\in}C(X)$ with $A{\subset}B$. (1) If X is c.i.k. at A, then X is c.i.k. at B if and only if B is admissible. (2) If A is admissible and C(X) is c.i.k. at A, then for each open set U containing A there is a continuum K and a neighborhood V of A such that $V{\subset}IntK{\subset}K{\subset}U$. (3) If for each open subset U of X containing A, there is a continuum B in C(X) such that $A{\subset}B{\subset}U$ and X is c.i.k. at B, then X is c.i.k. at A. (4) If X is not c.i.k. at a point x of X, then there is an open set U containing x and there is a sequence $\{S_i\}^{\infty}_{i=1}$ of components of $\bar{U}$ such that $S_i{\longrightarrow}S$ where S is a nondegenerate continuum containing the point x and $S_i{\cap}S={\emptyset}$ for each i = 1, 2, ${\cdots}$.

Modeling and control of a flexible continuum module actuated by embedded shape memory alloys

  • Hadi, Alireza;Akbari, Hossein
    • Smart Structures and Systems
    • /
    • v.18 no.4
    • /
    • pp.663-682
    • /
    • 2016
  • Continuum manipulators as a kind of mechanical arms are useful tools in special robotic applications. In medical applications, like colonoscopy, a maneuverable thin and flexible manipulator is required. This research is focused on developing a basic module for such an application using shape memory alloys (SMA). In the structure of the module three wires of SMA are uniformly distributed and attached to the circumference of a flexible tube. By activating wires, individually or together, different rotation regimes are provided. SMA model is used based on Brinson work. The SMA model is combined to model of flexible tube to provide a composite model of the module. Simulating the model in Matlab provided a platform to be used to develop controller. Complex and nonlinear behavior of SMA make the control problem hard especially when a few SMA actuators are active simultaneously. In this paper, position control of the two degree of freedom module is under focus. An experimental control strategy is developed to regulate a desired position in the module. The simulation results present a reasonable performance of the controller. Moreover, the results are verified through experiments and show that the continuum module of this paper would be used in real modular manipulators.

Finite element vibration analysis of nanoshell based on new cylindrical shell element

  • Soleimani, Iman;Beni, Yaghoub T.;Dehkordi, Mohsen B.
    • Structural Engineering and Mechanics
    • /
    • v.65 no.1
    • /
    • pp.33-41
    • /
    • 2018
  • In this paper, using modified couple stress theory in place of classical continuum theory, and using shell model in place of beam model, vibrational behavior of nanotubes is investigated via the finite element method. Accordingly classical continuum theory is unable to correctly compute stiffness and account for size effects in micro/nanostructures, higher order continuum theories such as modified couple stress theory have taken on great appeal. In the present work the mass-stiffness matrix for cylindrical shell element is developed, and by means of size-dependent finite element formulation is extended to more precisely account for nanotube vibration. In addition to modified couple stress cylindrical shell element, the classical cylindrical shell element can also be defined by setting length scale parameter to zero in the equations. The boundary condition were assumed simply supported at both ends and it is shown that the natural frequency of nano-scale shell using the modified coupled stress theory is larger than that using the classical shell theory and the results of Ansys. The results have indicated using the modified couple stress cylindrical shell element, the rigidity of the nano-shell is greater than that in the classical continuum theory, which results in increase in natural frequencies. Besides, in addition to reducing the number of elements required, the use of this type of element also increases convergence speed and accuracy.