• Title/Summary/Keyword: continuum

Search Result 1,382, Processing Time 0.027 seconds

A Study on the Influence of Husbands' Experience of Violence suffered in their Growing Ages, their Psychological Characteristics, and Interactions of the Couple on the Husband-to-Wife Violence - Focused on the Continuum of Violence Assumption - (남편의 성장기 폭력경험, 심리적 특성 및 부부간 상호작용이 아내폭력에 미치는 영향 - 폭력의 연속성 가정을 중심으로 -)

  • 김예정;김득성
    • Journal of Families and Better Life
    • /
    • v.21 no.6
    • /
    • pp.53-67
    • /
    • 2003
  • The aim of this research is to verify the assumption that the husband-to-wife violence lies upon a continuum of severity and to study how the premarital violence experience of husbands, along with their psychological characteristics and various marital interactions, can be the cause of husbands' violence against their wives. At the same time, the research aims at constructing a causal model of the husband-to-wife violence. For the purpose, this research surveyed 242 husbands residing in Pusan and another 50 husbands as violent assaulters in major cities of Korea. The following is a summary of the results of this research. First, the research can verify the two assumptions that “the group which has once inflicted a severe form of violence can easily inflict minor violences” and that “the factors related to violence play a far greater role in severe violences than in weaker violences.” As a result, it may be concluded that the study of a regular household violence can be based on the continuum of violence assumption. Secondly, In the husbands' experience of violence, dating violence and their experienced childhood abuse from their parents, in their psychological characteristics, temper control ability and their patriarchal sex role attitude, and finally in marital interactions, marital conflicts and distractor of communication played great role in their influence on the husband-to-wife violence. Thirdly, as the various factors which contribute to the violence against the wife have cause-and-effect rule, we shall be able to make a model which can be conceptualized.

An Analysis of ${\gamma}-ray$ Energy Spectra Using the NaI(T1) Scintillation Detector in the Air and Water (NaI(T1) 섬광검출기를 이용한 공기 및 수중에서의 감마선 에너지스펙트럼 분석)

  • Kim, Eun-Sug;Park, Jae-Woo
    • Journal of Radiation Protection and Research
    • /
    • v.21 no.4
    • /
    • pp.285-296
    • /
    • 1996
  • The energy spectra in the air and water of several ${\gamma}-ray$ sources such as Cr-51, Cs-137, Mn-54, Zn-65 have been investigated using the NaI(T1) scintillation detector. General response functions, which can curve fit the measured spectra, have been constructed. We have found that the constructed response functions can successfully represent the measured spectra in the water as well as in the air, It is possible, by comparing the relevant parameters of the response functions, to quantitatively characterize the changing features of the measured spectra as obtained with varying the water depth. Of the response function parameters, those which affect the shape of the full-energy Peak have most notably changed. Besides, those parameters which affect the shapes of the flat continuum, the Compton continuum and edge have also shown slight changes with varying the water depth.

  • PDF

Plume Behavior Study of Apollo Lunar Module Descent Engine Using Computational Fluid Dynamics (전산유체역학을 이용한 아폴로 달착륙선 하강엔진의 플룸 거동 연구)

  • Choi, Wook;Lee, Kyun Ho;Myong, Rho Shin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.9
    • /
    • pp.766-774
    • /
    • 2017
  • When a plume flow exhausted from a lunar lander descent engine impinges on the lunar surface, regolith particles on the lunar surface will be dispersed due to a plume-surface interaction. If the dispersed particles collide with the lunar lander, some adverse effects such as a performance degradation can be caused. Thus, this study tried to predict the plume flow behaviors using the CFD methods. A nozzle inside region was analyzed by a continuum flow model based on the Navier-Stokes equations while the plume behaviors of the outside nozzle was performed by comparing and analyzing the individual results using the continuum flow model and the DSMC method. As a result, it was possible to establish an optimum procedure of the plume analysis for the lunar lander descent engine in the vacuum condition. In the future, it is expected to utilize the present results for the development of the Korean lunar lander.

An Efficient Background Modeling and Correction Method for EDXRF Spectra (EDXRF 스펙트럼을 위한 효율적인 배경 모델링과 보정 방법)

  • Park, Dong Sun;Jagadeesan, Sukanya;Jin, Moonyong;Yoon, Sook
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.8
    • /
    • pp.238-244
    • /
    • 2013
  • In energy dispersive X-ray fluorescence analysis, the removal of the continuum on which the X-ray spectrum is superimposed is one of the most important processes, since it has a strong influence on the analysis result. The existing methods which have been used for it usually require tight constraints or prior information on the continuum. In this paper, an efficient background correction method is proposed for Energy Dispersive X-ray fluorescence (EDXRF) spectra. The proposed method has two steps of background modeling and background correction. It is based on the basic concept which differentiates background areas from the peak areas in a spectrum and the SNIP algorithm, one of the popular methods for background removal, is used to enhance the performance. After detecting some points which belong to the background from a spectrum, its background is modeled by a curve fitting method based on them. And then the obtained background model is subtracted from the raw spectrum. The method has been shown to give better results than some of traditional methods, while working under relatively weak constraints or prior information.

Estimation of the Effective Hydraulic Conductivity in the Granite Area as an Equivalent Continuum Medium (등연속체매질로서의 화강암지역의 유효수리전도도 산출)

  • 김경수;김천수;배대석
    • The Journal of Engineering Geology
    • /
    • v.12 no.3
    • /
    • pp.319-332
    • /
    • 2002
  • This study is focused on the characterization of an effective hydraulic conductivity in each hydrogeologic unit assumed as an equivalent continuum medium in the granitic area. Four boreholes of 3" diameter were installed and a Multi-packer system was facilitated in the selected borehole. Various in-situ tests including the fracture logging, constant injection and fall-off tests, slug and pulse tests were carried out. A hydrogeologic unit was defined into the upper and lower zones based on the variation of fracture properties and hydraulic conductivities. The difference of the result obtained by the various hydraulic tests and the effective characterization techniques on rock mass permeability are also discussed. The effective hydraulic conductivity of the upper unit was measured by two times(5.27E-10 m/s~7.57E-10 m/s) that of the lower unit(2.45E-10 m/s~6.81E-10 m/s)through the constant injection and fall-off tests.

A Numerical Study on Thermo-hydro-mechanical Coupling in Continuum Rock Mass Based on the Biot′s Consolidation Theory (Biot의 압밀 이론에 근거한 연속체 암반의 열-수리-역학 상호작용의 수치적 연구)

  • 이희석;양주호
    • Proceedings of the Korean Society for Rock Mechanics Conference
    • /
    • 2000.09a
    • /
    • pp.105-115
    • /
    • 2000
  • As large underground projects such as radioactive waste disposal, hot water and heat storage, and geothermal energy become influential, the study, which consider all aspects of thermics, hydraulics and mechanics would be needed. Thermo Hydro-Mechanical coupling analysis is one of the most complex numerical technique because it should be implemented with the combined three governing equations to analyze the behavior of rock mass. In this study, finite element code, which is based on Biot's consolidation theory, was developed to analyze the thermo-hydro-mechanical coupling in continuum rock mass. To verify the implemented program, one-dimensional consolidation model under the isothermal and non-isothermal conditions was analyzed and was compared with the analytic solution. The parametric study on two-dimensional consolidation was also performed and the effects of several factors such as poisson's ratio and hydraulic anisotropy on rock mass behavior were investigated. In the future, this program would be revised to be used for analysis of general discontinuous media with incorporating discrete joint model.

  • PDF

A Comparison of Barton-Bandis Joint Model and Mohr-Coulomb Joint Model for Tunnel Stability Analysis with DEM (개별요소법을 이용한 터널 안정성 해석에 있어 Barton-Bandis 절리 모델과 Mohr-Coulomb절리 모델의 비교)

  • 이성규;김치환
    • Tunnel and Underground Space
    • /
    • v.11 no.2
    • /
    • pp.167-173
    • /
    • 2001
  • The joint model has influence on the results of discontinuum analysis. In this study the results of discontinuum analysis with Barton-Bandis joint model(BB model) and with Mohr-Coulomb joint model(MC model) are compared. The results of continuum analysis under the same condition are compared with the results of discontinuum analysis to investigate the behavior of rockmass around tunnel. The result of continuum analysis and that of discontinuum analysis with BB model show similar distribution of displacement and stress. On the other hand, the discontinuum analysis with MC model shows different displacement distribution and stress distribution. Moreover, the displacement and minor principal stress of the discontinuum analysis with MC model are smaller than those of continuum analysis, although the joints are explicitly considered in the discontinuum analysis. These results are originated from the limitation of MC model in simulating joint deformation behavior, especially the assumption of constant dilation jingle independent of it)int 7hear displacement.

  • PDF

A Numerical Study on Thermo-hydro-mechanical Coupling in Continuum Rock Mass Based on the Biot's Consolidation Theory (Biot의 압밀 이론에 근거한 연속체 암반의 열-수리-역학 상호작용의 수치적 연구)

  • 이희석;양주호
    • Tunnel and Underground Space
    • /
    • v.10 no.3
    • /
    • pp.355-365
    • /
    • 2000
  • As large underground projects such as radioactive waste disposal, hot water and heat storage, and geothermal energy become influential, the study, which consider all aspects of thermics, hydraulics and mechanics would be needed. Thermo-Hydro-Mechanical coupling analysis is one of the most complex numerical technique because it should be implemented with the combined three governing equations to analyze the behavior of rock mass. In this study, finite element code, which is based on Biot's consolidation theory, was developed to analyze the thermo-hydro-mechanical coupling in continuum rock mass. To verify the implemented program, one-dimensional consolidation model under the isothermal and non-isothermal conditions was analyzed and was compared with the analytic solution. The parametric study on two-dimensional consolidation was also performed and the effects of several factors such as poisson's ratio and hydraulic anisotropy on rock mass behavior were investigated. In the future, this program would be revised to be used for analysis of general discontinuous media with incorporating discrete joint model.

  • PDF

Study on Small Thruster Plume using Preconditioned Continuum Scheme and DSMC Method in Vaccum Area (희박영역에서 예조건화 연속체기법과 직접모사법을 이용한 소형 추력기 플룸 거동에 관한 연구)

  • Lee, Kyun-Ho;Lee, Sung-Nam
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.9
    • /
    • pp.906-915
    • /
    • 2009
  • To study the plume effects in the vacuum area, the Direct Simulation Monte Carlo(DSMC) method is usually adopted because the plume field usually contains the entire range of flow regime from the near-continuum in the vicinity of nozzle exit through transitional state to free molecular at far field region from the nozzle. The objective of this study is to investigate the behaviors of a small monopropellant thruster plume in the vacuum area numerically using DSMC method. To deduce accurate results efficiently, the preconditioned scheme is introduced to calculate continuum flow fields inside thruster to predict nozzle exit properties used for inlet conditions of DSMC method. By combining these two methods, the vacuum flow characteristics of plume such as strong nonequilibrium near nozzle exit, large back flow area, etc, can be investigated.

The Limit of the Continuum Assumption Based on Compressible Flow Structures in an Axisymmetric Micro-Thruster Used for a Satellite (인공위성용 축대칭 소형 추력기의 압축성 유동 구조 계산에 의한 연속체 가정의 적용 한계)

  • Kwon, Soon-Duk;Kim, Sung-Cho;Kim, Jeong-Soo;Choi, Jong-Wook;Lee, Kee-Man
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.04a
    • /
    • pp.281-285
    • /
    • 2007
  • The flow characteristics in the thruster should be analyzed considering its geometry and the pressure ratio to estimate its performance and etc. This paper suggests the computational result of an axisymmetric real nozzle for the altitude control of a satellite to find out the application limit that the assumption of continuum mechanics holds. The steady non-reacted compressible flow field in the unstructured grid system is computed and analyzed with varying the environmental pressure (or the degree of vacuum) under the fixed pressure ratio in a real thruster of which the area ratio of exit to throat is 56. The assumption of the continuum mechanics is not approved when the environmental pressure is reduced less than $10^{-3}$ atm.

  • PDF