• 제목/요약/키워드: continuous fiber

검색결과 431건 처리시간 0.023초

Optimum Operation of a PVDF-type Hollow Fiber Membrane Bioreactor for Continuous Sewage Treatment

  • Shin, Choon-Hwan
    • 한국환경과학회지
    • /
    • 제19권11호
    • /
    • pp.1315-1322
    • /
    • 2010
  • A membrane bioreactor (MBR) was designed using polyvinylidene fluoride(PVDF)-type hollow fiber membrane modules with a treatment capacity of 10 ton/day. A pilot plant was installed in a sewage treatment plant and was operated with an intermittent aeration method which avoids any concentration gradient of suspended solids (SS) in the MBR. For continuous operation, the pilot plant was first tested with influent (mixed liquor suspended solid:MLSS of 1000-2000 mg/L) of aeration tanks in the sewage treatment plant. The MBR was pre-treated with washing water, 10% ethanol solution, 5% NaOCl solution and finally washing water, one after another. To demonstrate the effect of the MBR on sewage treatment, compared with conventional activated sludge processes, we investigated the relationships among permeate amount (LMH), change in operation conditions, influent MLSS level and sludge production. It was found that the optimum aeration rate and suction pressure were $0.3\;m^3$/min and 30~31 cmHg, respectively. Under stable conditions in aeration, suction pressure, influent flow rate and drainage, the SS removal efficiency was more than 99.99% even when the MLSS loading rate changes. Compared with conventional activated sludge processes, the MBR was more effective in cost reduction by 27% based on permeate amount and by 51.5% on sludge production.

Free vibration analysis of thick CGFR annular sector plates resting on elastic foundations

  • Tahouneh, Vahid
    • Structural Engineering and Mechanics
    • /
    • 제50권6호
    • /
    • pp.773-796
    • /
    • 2014
  • This paper deals with free vibration analysis of continuous grading fiber reinforced (CGFR) and bi-directional FG annular sector plates on two-parameter elastic foundations under various boundary conditions, based on the three-dimensional theory of elasticity. The plates with simply supported radial edges and arbitrary boundary conditions on their circular edges are considered. A semi-analytical approach composed of differential quadrature method (DQM) and series solution is adopted to solve the equations of motion. Some new results for the natural frequencies of the plate are prepared, which include the effects of elastic coefficients of foundation, boundary conditions, material and geometrical parameters. Results indicate that the non-dimensional natural frequency parameter of a functionally graded fiber volume fraction is larger than that of a discrete laminated and close to that of a 2-layer. It results that the CGFR plate attains natural frequency higher than those of traditional discretely laminated composite ones and this can be a benefit when higher stiffness of the plate is the goal and that is due to the reduction in spatial mismatch of material properties. Moreover, it is shown that a graded ceramic volume fraction in two directions has a higher capability to reduce the natural frequency than conventional one-dimensional functionally graded material. The multidirectional graded material can likely be designed according to the actual requirement and it is a potential alternative to the unidirectional functionally graded material. The new results can be used as benchmark solutions for future researches.

The R & D of SiC Fiber Reinforced Composites for Energy and Transportation Applications

  • Kohyama, Akira
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2006년 창립20주년기념 정기학술대회 및 국제워크샵
    • /
    • pp.5-13
    • /
    • 2006
  • Based on the inventions of continuous ceramic fibers, such as C, SiC, $Al_2O_3$ etc., by polymer precursor driven methods, there have been many efforts to fabricate ceramic continuous fiber reinforced composite materials with metals and ceramics matrices. The main purpose of the R & D efforts has been to produce materials for severe environments, including advanced energy systems, advanced transportation systems. The efforts have been started from the R & D of metal matrix composite materials and now the strong emphasis on ceramic matrix composites R & D can be recognized. This paper provides a brief review about the national efforts to establish advanced composite materials for future industries starting from mid 70s. C/Al and SiC/Al are the typical examples to be applied transportation systems and energy systems. The excellences in specific strength and overall mechanical properties, the excellences in environmental resistance make those materials as potential materials for advanced ocean construction and marine transportation systems. About the recent progress in ceramic fiber reinforced ceramic composites, advanced SiC/SiC composites including NITE-SiC/SiC will be introduced and the present status will be introduced.

  • PDF

T-ray를 이용한 풍력터빈 브레이드 비파괴결함평가 (Nondestructive Evaluation of the Turbine Blade of Wind Energy By Using T-Ray)

  • 임광희;정종안;;이길성
    • 한국생산제조학회지
    • /
    • 제21권1호
    • /
    • pp.102-108
    • /
    • 2012
  • A study of terahertz waves (T-ray) was made for the nondestructive evaluation of FRP (Fiber reinforced plastics) composite materials. The to-be-used systems were time domain spectroscopy (TDS) and continuous wave (CW). The composite materials investigated include both turbine blades of wind energy (non-conducting polymeric composites) and conducting carbon fiber composites. Terahertz signals in the TDS mode resembles that of ultrasound; however, unlike ultrasound, a terahertz pulse was not able to detect a material with conductivity. This was demonstrated in CFRP (Carbon fiber reinforced plastics) laminates. Refractive index (n) was defined as one of mechanical properties; so a method was solved in order solve the "n" in the material with the cut parts of the turbine blades of wind energy. The defects and anomalies investigated by terahertz radiation were foreign material inclusions and simulated disband. Especially, it is found that the T-ray went through the turbine blade with greater thickness (about 90mm).

저가형 탄소섬유 개발을 위한 자외선 조사 기반 의류용 PAN 섬유의 연속식 안정화 공정 개발 (Developing Continuous Stabilization Process for Textile-Grade PAN Fiber-Based Carbon Fiber Using UV Irradiation)

  • 문준하;성홍규;유지선;조세연;최재원
    • 한국분말재료학회지
    • /
    • 제29권5호
    • /
    • pp.418-423
    • /
    • 2022
  • Carbon fibers (CFs) are considered promising composite materials for various applications. However, the high cost of CFs (as much as $26 per kg) limits their practical use in the automobile and energy industries. In this study, we developed a continuous stabilization process for manufacturing low-cost CFs. We employed a textile-grade polyacrylonitrile (PAN) fiber as a low-cost precursor and UV irradiation technique to shorten the thermal stabilization time. We confirmed that UV irradiation on the textile-grade PAN fibers could lower the initial thermal stabilization temperature and also lead to a higher reaction. These resulted in a shorter overall stabilization time and enhancement of the tensile properties of textile-grade PAN-based CFs. Our study found that only 70 min of stabilization time with UV irradiation was required to prepare textile-grade PAN-based low-cost CFs with a tensile strength of 2.37 ± 0.22 GPa and tensile modulus of 249 ± 5 GPa.

Membrane Cell Recycle Fermentor에 의한 에탄올 연속 발효 (Continuous Ethanol Fermentation Using Membrane Cell Recycle Fermentor)

  • 김태석;이석훈;손석민;권윤중;변유량
    • 한국미생물·생명공학회지
    • /
    • 제19권4호
    • /
    • pp.419-427
    • /
    • 1991
  • 에탄올의 발효 생산성을 높이기 위해서는 발효조의 균체농도를 높여 고농도의 배양을 해야하며 또한 에탄올에 의한 저해 작용을 감소시켜 비생산성을 향상시키기 위해서는 발효액 중에 축적되는 에탄올을 배출 시킬 필요가 있다. 이와 같은 목적으로 본 연구에서는 고분자 hollow fiber membrane, ceramic filter를 이용하여 가장 중요한 조작 변수인 희석율과 bleed stream ratio가 에탄올 생산성에 미치는 영향 및 조작의 문제점과 장기 조업 가능성을 검토하였다.

  • PDF

Performance of Continuous-wave Coherent Doppler Lidar for Wind Measurement

  • Jiang, Shan;Sun, Dongsong;Han, Yuli;Han, Fei;Zhou, Anran;Zheng, Jun
    • Current Optics and Photonics
    • /
    • 제3권5호
    • /
    • pp.466-472
    • /
    • 2019
  • A system for continuous-wave coherent Doppler lidar (CW lidar), made up of all-fiber structures and a coaxial transmission telescope, was set up for wind measurement in Hefei (31.84 N, 117.27 E), Anhui province of China. The lidar uses a fiber laser as a light source at a wavelength of $1.55{\mu}m$, and focuses the laser beam on a location 80 m away from the telescope. Using the CW lidar, radial wind measurement was carried out. Subsequently, the spectra of the atmospheric backscattered signal were analyzed. We tested the noise and obtained the lower limit of wind velocity as 0.721 m/s, through the Rayleigh criterion. According to the number of Doppler peaks in the radial wind spectrum, a classification retrieval algorithm (CRA) combining a Gaussian fitting algorithm and a spectral centroid algorithm is designed to estimate wind velocity. Compared to calibrated pulsed coherent wind lidar, the correlation coefficient for the wind velocity is 0.979, with a standard deviation of 0.103 m/s. The results show that CW lidar offers satisfactory performance and the potential for application in wind measurement.

액상가압공정으로 제조된 탄탈륨 연속섬유 강화 비정질 복합재료의 미세조직과 기계적 성질 (Microstructure and Mechanical Properties of Tantalum-Continuous-Fiber-Reinforced Amorphous Matrix Composites Fabricated by Liquid Pressing Process)

  • 이규홍;이상복;이상관;이성확
    • 대한금속재료학회지
    • /
    • 제46권7호
    • /
    • pp.403-411
    • /
    • 2008
  • Zr-based amorphous alloy matrix composites reinforced with tantalum continuous fibers were fabricated by liquid pressing process, and their microstructures and mechanical properties were investigated. About 60 vol.% of tantalum fibers were homogeneously distributed inside the amorphous matrix, which contained a small amount of polygonal crystalline particles. The ductility of the tantalum-continuous-fiber-reinforced composite under tensile or compressive loading was dramatically improved over that of the monolithic amorphous alloy, while maintaining high strength. The consequential observation of the tensile deformation and fracture behavior of the composite showed the formation of multiple shear bands and multiple necking, crack deflection in the amorphous matrix, and obstruction of crack propagation by ductile fibers, thereby resulting in very high tensile elongation of 7.2%. These findings suggested that the liquid pressing process was useful for the development of amorphous matrix composites with improved ductility.

항공우주용 리오셀계 흑연화 직물 개발 (Development of Lyocell-Based Graphite Fabric for Aerospace)

  • 박길영;김남규;김연철;서상규;정용식
    • 한국추진공학회지
    • /
    • 제25권4호
    • /
    • pp.36-42
    • /
    • 2021
  • 본 연구에서는 리오셀 섬유를 사용하여 연속식 흑연직물을 제조함에 있어, 리오셀 섬유에 phosphoric acid, ammonium phosphate, diammonium hydrogen, triammonium phosphate의 인계난연제를 처리 후 열중량, 푸리에변환적외선분광, C-핵자기공명분광, X-선 회절, 중량 분석을 통해 나타나는 물리적, 화학적 구조 변화에 대하여 고찰하였다. 인계난연제에 의한 열적 거동을 분석을 통해 내염화 공정의 온도, 가스, 처리시간 등에 대한 조건을 설정하였다. 연속식 내염화, 탄화, 흑연화 공정을 통해 인장강도 1,007.19±11.47 N/5 cm와 수율 25.3%의 흑연직물을 제조하였다.

횡하중을 받는 SiC/Ti-15-3 MMC 복합재 계면영역에서의 탄소성 응력장분포거동(I) (Elastic-Plastic Stress Distributions Behavior in the Interface of SiC/Ti-15-3 MMC under Transverse Loading(I))

  • 강지웅;김상태;권오헌
    • 한국안전학회지
    • /
    • 제19권4호
    • /
    • pp.25-30
    • /
    • 2004
  • Unidirectional fiber-metal matrix composites have superior mechanical properties along the longitudinal direction. However, the applicability of continuous fiber reinforced MMCs is somewhat limited due to their relatively poor transverse properties. Therefore, the transverse properties of MMCs are significantly influenced by the properties of the fiber/matrix interface. In this study, the interfacial stress states of transversely loaded unidirectional fiber reinforced metal matrix composites investigated by using elastic-plastic finite element analysis. Different fiber volume fractions $(5-60\%)$ were studied numerically. The interface was treated as thin layer (with different properties) with a finite thickness between the fiber and the matrix. The fiber is modeled as transversely isotropic linear-elastic, and the matrix as isotropic elastic-plastic material. The analyses were based on a two-dimensional generalized plane strain model of a cross-section of an unidirectional composite by the ANSYS finite element analysis code.