• Title/Summary/Keyword: continuous deposition

Search Result 188, Processing Time 0.031 seconds

Precursor Chemistry for Atomic Layer Deposition

  • Chung, Taek-Mo;Kim, Chang Gyoun;Park, Bo Keun;Jeon, Dong Ju;An, Ki-Seok;Lee, Sun Sook
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.76.2-76.2
    • /
    • 2013
  • Advanced electronic application areas have strongly required new materials due to the continuous shrinking dimensions of their devices. Specially, the development and use of metal precursors for atomic layer deposition has been extensively focused on application to electronic devices. Thus the systematic design and synthesis of metal compounds with relevant chemical and physical properties, such as stability, volatility, and resistance to air and moisture are very important in the vacuum deposition fields. In many case, organic ligands for metal precursors are especially focused in the related research areas because the large scale synthesis of the metal complexes with excellent properties exclusively depends on the potential usefulness of the ligands. It is recommended for metal complexes to be in monomeric forms because mononuclear complexes generally show high vapor pressures comparing with their oligomeric structure such as dimer and trimer. Simple metal alkoxides complexes are involatile except several examples such as Ti(OiPr)4, Si(OEt)4, and Hf(OtBu)4. Thus the coordinated atom of alkoxide ligands should be crowded in its own environment with some substituents by prohibiting the coordinated atoms from bonding to another metal through oxygen-bridging configuration. Alkoxide ligands containing donor-functionalized group such as amino and alkoxy which can induce the increasing of the coordinative saturation of the metal complexes and the decreasing of the intermolecular interaction between or among the metal compounds. In this presentation, we will discuss the development of metal compounds which adopted donor-functionalized alkoxide ligands derived from their alcohols for electronic application. Some recent results on ALD using metal precursors such as tin, nickel, ruthenium, and tungsten developed in our group will be disclosed.

  • PDF

Growth Behavior of InGaN/GaN Quantum Dots Structure Via Metal-organic Chemical Vapor Deposition (유기금속기상증착법에 의한 InGaN/GaN 양자점 구조의 성장거동)

  • Jung, Woo-Gwang;Jang, Jae-Min;Choi, Seung-Kyu;Kim, Jin-Yeol
    • Korean Journal of Materials Research
    • /
    • v.18 no.10
    • /
    • pp.535-541
    • /
    • 2008
  • Growth behavior of InGaN/GaN self-assembled quantum dots (QDs) was investigated with respect to different growth parameters in low pressure metalorganic chemical vapor deposition. Locally formed examples of three dimensional InGaN islands were confirmed from the surface observation image with increasing indium source ratio and growth time. The InGaN/GaN QDs were formed in Stranski-Krastanow (SK) growth mode by the continuous supply of metalorganic (MO) sources, whereas they were formed in the Volmer-Weber (V-W) growth mode by the periodic interruption of the MO sources. High density InGaN QDs with $1{\sim}2nm$ height and $40{\sim}50nm$ diameter were formed by the S-K growth mode. Dome shape InGaN dots with $200{\sim}400nm$ diameter were formed by the V-W growth mode. InN content in InGaN QDs was estimated to be reduced with the increase of growth temperature. A strong peak between 420-460 nm (2.96-2.70 eV) was observed for the InGaN QDs grown by S-K growth mode in photoluminescence spectrum together with the GaN buffer layer peak at 362.2 nm (3.41 eV).

Experimental investigation of blocking mechanism for grouting in water-filled karst conduits

  • Zehua Bu;Zhenhao Xu;Dongdong Pan;Haiyan Li;Jie Liu;Zhaofeng Li
    • Geomechanics and Engineering
    • /
    • v.34 no.2
    • /
    • pp.155-171
    • /
    • 2023
  • Aiming at the grouting treatment of water inflow in karst conduits, a visualized experiment system for conduit-type grouting blocking was developed. Through the improved water supply system and grouting system, and the optimized multisource information monitoring system, the real-time observation of diffusion and deposition of slurry, and the data acquisition of pressure and velocity during the whole process of grouting were realized, which breaks through the problem that the monitoring element is easy to fail due to slurry adhesion in conventional test system. Based on the grouting experiments in static and flowing water, the diffusion and deposition behavior of the quick-setting slurry under different working conditions were analyzed. The temporal and spatial variation behavior of the pressure and velocity were studied, and the blocking mechanism of the grouting were further revealed. The results showed that: (1) Under the flowing water condition, the counter-flow diffusion distance of slurry was negatively correlated with the flow water velocity and the volume ratio of cement and sodium silicate (C-S ratio), and positively correlated with the grouting volume. The slurry deposition thickness was negatively correlated with the flowing water velocity, and positively correlated with the grouting volume and C-S ratio. (2) The pressure increased slowly before blocking of the flowing water and rapidly after blocking in karst conduits. (3) With the continuous progress of grouting, the flowing water velocity decreased slowly first, then significantly, and finally tended to be stable. According to the research results, some engineering recommendations were put forward for the grouting treatment of the conduit-type water inflow disaster, which has been successfully applied in the treatment project of the China Resources Cement (Pingnan) Limestone Mine. This study provided some guidance and reference for the parameter optimization of grouting for the treatment projects of water inflow in karst conduits.

The Effect of Surface Plasmon on Internal Photoemission Measured on Ag/$TiO_2$ Nanodiodes

  • Lee, Hyosun;Lee, Young Keun;Park, Jeong Young
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.662-662
    • /
    • 2013
  • Over the last several decades, innovative light-harvesting devices have evolved to achieve high efficiency in solar energy transfer. Research on the mechanisms for plasmon resonance is very desirable to overcome the conventional efficiency limits of photovoltaics. The influence of localized surface plasmon resonance on hot electron flow at a metal-semiconductor interface was observed with a Schottky diode composed of a thin silver layer on $TiO_2$. The photocurrent is generated by absorption of photons when electrons have enough energy to travel over the Schottky barrier and into the titanium oxide conduction band. The correlation between the hot electrons and the surface plasmon is confirmed by matching the range of peaks between the incident photons to current conversion efficiency (IPCE, flux of collected electrons per flux of incident photons) and UV-Vis spectra. The photocurrent measured on Ag/$TiO_2$ exhibited surface plasmon peaks; whereas, in contrast to the Au/$TiO_2$, a continuous Au thin film doesn't exhibit surface plasmon peaks. We modified the thickness and morphology of a continuous Ag layer by electron beam evaporation deposition and heating under gas conditions and found that the morphological change and thickness of the Ag film are key factors in controlling the peak position of light absorption.

  • PDF

Magnetic Properties of Ni Nanostructures Made by using Nanoporous Anodic Alumina (AAO를 이용한 Ni 나노구조체의 자기적 특징)

  • Lee, S.G.;Shin, S.W.;Lee, J.;Lee, J.H.;Kim, T.G.;Song, J.H.
    • Journal of the Korean Magnetics Society
    • /
    • v.14 no.3
    • /
    • pp.105-108
    • /
    • 2004
  • Array of magnetic Ni nanostructures has been fabricated on Si substrate by using nanoporous alumina film as a mask during deposition. The nanostructures are truncated cone-shape and the lateral sizes are comparable to height. While the continuous film shows well-defined in-plane magnetization, the nanostructure shows perpendicular component of magnetization at remanence. The hysterectic behavior of nanostructures is dominated by the demagnetizing field instead of interaction among them.

Fabrication of YBCO coated conductors by PLD continuous reel-to-reel processing (PLD 연속 공정을 통한 YBCO coated conductor 제조)

  • ;;Donggqi Shi
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2003.10a
    • /
    • pp.150-152
    • /
    • 2003
  • YBa$_2$Cu$_3$O$_{7-{\delta}}$(YBCO) coated conductors were deposited by pulsed laser deposition (PLD) on short buffered substrate in continuous PLD reel-to-reel system. The oxide multilayer buffered substrate of architectures of CeO$_2$/YSZ/Y$_2$O$_3$was fabricated by PLD at steady status. The degree of texture of each layer was investigated using X-ray diffraction including $\theta$-2$\theta$ scans, $\omega$-scans and $\Phi$-scans analysis. Their surface morphology was observed by scanning electron microscopy (SEM) The FWHM of the X-ray $\omega$-scans and $\Phi$-scans indicated that YBCO and buffer layers closely replicate the in-plane and out-of-plane texture of metal tape. Critical current at 77K self-field of 19A, critical temperature of 86K, and current density of 2MA/$\textrm{cm}^2$ were measured. The film also exhibits a homogeneous and dense surface morphology.e morphology.

  • PDF

Recent Progress in New Functional Coating Technology (신기능성 표면처리강판 제조기술의 최근 진보)

  • Kim, Tae-Yeop
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2012.05a
    • /
    • pp.37-37
    • /
    • 2012
  • The coated steels, mainly with zinc by either hot-dip galvanizing or electroplating, are widely used for panels of automotive, electrical appliances and construction, whose size of world market have reached 130 million tons in 2008. Current issues for the coated steels can be integrated in terms of high functionality, low cost, environment-friend and available resource. The best solution can be provided if thin layer coating with higher quality is produced by an eco-friendly process, and PVD, physical vapor deposition, can be an alternative practice to existing coating processes. PVD technologies have been very common ones in electronic and semiconductor industries, but recognized as non-profitable processes for the coated steels due to low process speed and lack of continuous operation skills. Systematic researches from 1990s in Europe, even though discouraged by a shutdown of the first Japanese PVD coating plant in 1999, have realized several continuous PVD coating plants, and also enhanced launching of developments in steel industries. To be successful with PVD coating technologies over existing ones, productivity to meet economics should be created from a highly sophisticated process. Some PVD technologies fit for the high-speed process will be introduced together with experiences from industrial applications.

  • PDF

Coating Properties of a TPD Organic Hole-transporting Layer Deposited using a Continuous slot-die Coating Method (연속 slot-die 코팅법을 이용한 TPD 유기 정공수송층의 코팅 특성 분석)

  • Chung, Kook Chae;Kim, Young Kuk;Choi, Chul Jin
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.4
    • /
    • pp.363-368
    • /
    • 2010
  • N,N'-diphenyl-N,N'-bis(3-methylphenyl)1-1' biphenyl-4,4'-diamine (TPD) hole-transporting layers were deposited using a continuous slot-die coating method on ITO/PET flexible substrates. It is crucial that the substrates have a very smooth surface with a RMS roughness of less than 2 nm for the deposition of semiconductor nanocrystals or Quantum Dots. The parameters of the slot-die coating, including the solution concentration of the TPD, the gap between the slot-die and the substrates, and the coating speed were controlled in these experiments. To obtain full coverage of the TPD films on the ITO/PET substrates (40 mm wide and several meters long), the injection rates of the TPD solution were increased proportional to the coating speed of the flexible substrates. Additionally, the injection rates must be increased as the gap distance changes from 400 to 600 ${\mu}m$ at the same coating speed. A RMS surface roughness of less than 2 nm was obtained, in contrast to bare ITO/PET substrates, at 13 nm, as the coating speed and gap distance increased.

Effect of Bending Test Procedure on the Degradation Behavior of Critical Current in ReBCO Coated Conductor Tapes

  • Shin, H.S.;Dedicatoria, M.J.;Lee, N.J.;Oh, S.S.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.11 no.4
    • /
    • pp.12-15
    • /
    • 2009
  • The $I_c$ degradation behavior of critical current in differently processed YBCO and SmBCO CC tapes with IBAD template has been investigated. It has been known that the residual strain in the CC tape will influence the shape of the $I_c$-strain window; $I_c$ may show a peak value if there exist a residual strain induced in the tape during manufacturing. The difference of residual strain may be resulted from the adopted different deposition techniques. In this study, bending test of CC tapes has been done using the Goldacker bending test rig which can produce both compressive and tensile bending strain continuously or alternately to the sample. For SmBCO CC tapes, in continuous compressive bending test, $I_c$ showed a minimal increase and did not degrade up to the largest strain that can be applied using the bending rig equivalent to 1.15% based on the sample thickness. However, in the case of alternate application of compressive and tensile bending strain, $I_c$ showed a larger degradation and a lower reversible limit when compared with the case of continuous application of the bending strain. When $I_c$ started to degrade significantly at the tension side, the reversibility ended, also at the compression side which is resulted from the permanent deformation like delamination or cracks that was induced due to tensile bending strain.

Fabrication Method of OPV using ESD Spray Coating (ESD 스프레이를 이용한 OPV 제작 기법)

  • Kim, Jungsu;Jo, Jeongdai;Kim, Dongsoo
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.84.2-84.2
    • /
    • 2010
  • PEMS (printed electro-mechanical system) is fabricated by means of various printing technologies. Passive and active components in 2D or 3D such as conducting lines, resistors, capacitors, inductors and TFT, which are printed with functional materials, can be classified in this category. And the issue of PEMS is applied to a R2R process in the manufacturing process. In many electro-devices, the vacuum process is used as the manufacturing process. However, the vacuum process has a problem: it is difficult to apply toa continuous process as a R2R printing process. In this paper, we propose an ESD (electro static deposition) printing process has been used to apply an organic solar cell of thin film forming. ESD is a method of liquid atomization by electrical forces, anelectrostatic atomizer sprays micro-drops from the solution injected into the capillary, with electrostatic force generated by electric potential of about tens of kV. ESD method is usable in the thin film coating process of organic materials and continuous process as a R2R manufacturing process. Therefore, we experiment the thin films forming of PEDOT:PSS layer and Active layer which consist of the P3HT:PCBM. The result of experiment, organic solar cell using ESD thin film coated method is occurred efficiency of about 1.4%. Also, the case of only used to ESD method in the active layer coating is occurred efficiency of about 1.86% as the applying a spin coating in the PEDOT:PSS layer. We can expect that ESD method is possible for continuous process to manufacture in the organic solar cell or OLED device.

  • PDF