• Title/Summary/Keyword: continuous cultivation

Search Result 308, Processing Time 0.025 seconds

Soil Physico-Chemical Properties and Characteristics of Microbial Distribution in the Continuous Cropped Field with Paeonia lactiflora (작약 연작재배지의 토양 이화학성 및 미생물 분포특성)

  • Park, Jun-Hong;Seo, Yeong-Jin;Choi, Seong-Yong;Zhang, Yong-Sun;Ha, Sang-Keun;Kim, Jang-Eok
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.5
    • /
    • pp.841-846
    • /
    • 2011
  • This study was conducted to obtain the information about injury caused by continuous cropping of peony (Paeonia lactiflora). Soil physico-chemical properties, characteristics of microbial distribution and diversities in the continuous cropped field with peony were analyzed. As the results, pH and organic matter content were higher in the continuous cropping soil than those in the first cropping soil. Bulk density was decreased but porosity was increased in the continuous cropping soil. As the cultivation period was lengthened in years, the populations of bacteria and actinomyces were gradually decreased, whereas fungal population was increased. It was shown that the metabolic diversity patterns of the microbial communities in the continuous cropping soil differed from that of the first cropping soil. These results indicate that deterioration of soil quality such as physico-chemical properties including a soil depth, bulk density, porosity and soil pH is related with a continuous cultivation periods, and also affect a microbial population, especially fungi.

Effects of Deep Seawater on the Growth of a Green Alga, Ulva sp.(Ulvophyceae, Chlorophyta)

  • Matsuyama, Kazuyo;Serisawa, Yukihiko;Nakashima, Toshimitsu
    • ALGAE
    • /
    • v.18 no.2
    • /
    • pp.129-134
    • /
    • 2003
  • In order to examine the effects of deep seawater (mesopelagic water in the broad sense) on the growth of macroalgae, the growth and nutrient uptake (nitrate and phosphate) of Ulva sp. (Ulvophyceae, Chlorophyta) were investigated by cultivation in deep seawater (taken from 687 m depth at Yaizu, central Japan, in August 2001), surface seawater (taken from 24 m depth), and a combination of the two. Culture experiments were carried out in a continuous water supply system and an intermittent water supply system, in which aerated 500-mL flasks with 4 discs of Ulva sp. (cut sections of ca. 2 $cm_2$) were cultured at 20$^{\circ}C$ water temperature, 100 $\mu$mol photons $m^{-2}{\cdot}s^{-1}$ light intensity, and a 14:10 light:dark cycle. Nutrient uptake by Ulva sp. was high in all seawater media in both culture systems. The frond area, dry weight, chlorophyll a content, dry weight per unit area, and chlorophyll a content per unit area of Ulva sp. at the end of the experimental period were the highest in deep seawater and the lowest in surface seawater in both culture systems. These values, except for dry weight per unit area and chlorophyll a content per unit area, for each seawater media in the intermittent water supply system were higher than those in the continuous water supply system. We conclude that not only deep seawater as the culture medium but also the seawater supply system is important for effective cultivation of macroalgae.

Development of Cultivation Facility Models to Reduce High Temperature Damage in Oak Mushroom (Lentinula edodes) Cultivation Using Bed-logs (고온피해 경감을 위한 표고 원목재배사 모델개발)

  • Kim, Own-Su;Kim, Seon-Cheol;Lee, Byeong-Seok;Kwon, Hyuk-Woo;Ko, Han-Gyu;Park, Heung-Soo
    • Journal of Mushroom
    • /
    • v.14 no.3
    • /
    • pp.119-126
    • /
    • 2016
  • Five empirical farmhouses were selected to reduce the high temperature damage in oak mushroom cultivation using bed-logs. The cultivation facilities were categorized as follows: those having two blackout curtains or one blackout curtain and outdoor oak mushroom cultivation. The inequality of the indoor condition, oak mushroom hyphae rampant ratio, and fruit body production in each test condition was evaluated. $3^{\circ}C$ was lower in indoor temperature of cultivation facility having two blackout curtains than one blackout curtain. Specifically, the indoor air humidity average of cultivation facilities having one or two blackout curtains was 10% lower than that of outdoor oak mushroom cultivation. This condition is not ideal for oak mushroom cultivation as continuous indoor humidity control is essential for producing good fruit bodies. The Inoculated bed-log surface and oak mushroom hyphae rampant ratio of bed-logs cultivated with two blackout curtains was superior to other tested conditions. The mushroom production ratio observed in facilities with two blackout curtains was 117-204% higher than those cultivated in facilities with only one blackout curtain. Furthermore, the mushroom production ratio increased in based on these findings, we recommended five cultivation facility models to reduce high temperature damage in oak mushroom cultivation using bed-logs.

Optimum Transplanting Time for Extremely Early Rice Greenhouse Cultivation in the Southern Area (남부지역 시설하우스 벼 극조기재배의 안전작기 설정)

  • 최장수;안덕종;원종건;이승필;윤재탁;김길웅
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.5 no.3
    • /
    • pp.191-199
    • /
    • 2003
  • Optimum transplanting time for extremely early rice cultivation as an after-crop of fruit and vegetables under greenhouse conditions in the southern area was determined. Rice was transplanted on March 10, March 20, March 30, April 10 and April 20 far three years from 1998 to 2000. Meteorological computations for rice production were high for heading between early May and early July, but they were too low for heading between late July and early August. Especially the expected yield predicted with 35,000 spikelets, the average spikelets per $m^2$ for extremely early transplanting. Computation for heading between late July and early August was low by 106 kg/10a compared with that yield at heading during the same period in the field. As the transplanting date in extremely early rice cultivation was earlier) rice growth at early stages was more retarded by low temperature. Rice growth at heading stage recovered with high temperature, showing less difference for the transplanting date. Abnormal tillers occurred by 15.5∼22.2%. The contribution of 1,000 grain weight${\times}$ripened grain ratio to yield of the extremely early rice cultivation in the greenhouse was 50.6%, indicating 16% hi일or than the degree of panicle per $m^2$ on yield. The estimated optimum transplanting time on the basis of yield for the extremely early greenhouse rice cultivation ranged from March 19 to April 28, and the estimated critical transplanting date on the basis of accumulated effective temperature was March 12. Rice reduced the amount of NO$_3$-N by 97.1% and EC by 90.5% in greenhouse soil with continuous fruit/vegetables fer more than a 10-year period, and completely removed the root-knot nematodes.

Kinetics of Cultivating Photosynthetic Microalga, Spirulina platensis in an Outdoor Photobioreactor (옥외 광배양조에서 광합성 미세조류인 Spirulina platensis의 대량배양에 관한 동력학적 연구)

  • 성기돈;안주희
    • KSBB Journal
    • /
    • v.10 no.4
    • /
    • pp.401-405
    • /
    • 1995
  • An open pond type photobioreactor for mass cultivation of S. platensis was designed and the growth parameters from different cultivation processes were compared. 0.30(1/day) of specific growth rate and 1.69(g/$\ell$) of maximum cell density were obtained from batch cultivation. In fed-batch cultivation, specific growth rate and maximum cell density were estimated as 0.22(1/day) and 1.75(g/$\ell$), respectively. Maximum biomass productively from continuous cultivation was obtained as 0.44 (g/$\ell$/day). It proves that an outdoors-mass cultivation of S. platensis considering optimal environmental condition is economically feasible. In addition, the biomass productivity was studied in two different mixing systems such as agitation and air sparging methods. The biomass productivity by an agitation method was better than that in an air sparging method.

  • PDF

A Study on Improved Assessment System for a Program Outcome on the Cultivation of Internationality (국제성함양과 관련된 프로그램 학습성과 평가체계 개선 연구)

  • Kim, Bok-Ki;Min, Sang-Won;Yi, Keon-Young;Yoon, Woo-Young;Kang, Sang-Hee
    • Journal of Engineering Education Research
    • /
    • v.12 no.2
    • /
    • pp.63-70
    • /
    • 2009
  • In this paper, a process model for assessing, evaluating and improving a program outcome on the cultivation of internationality is proposed by analyzing the present outcome assessment system. By setting up performance scaled levels and specifying the target level for the performance criterion, the proposed model can help programs to demonstrate effectively that each of their graduates meets the required the program outcome levels. By allowing effective Continuous Quality Improvement(CQI) for the performance criterion, the model can help save operational expense associated with running of the program CQI. In addition, it is discussed that one of the most important aspect is logical and objective approaches when establishing the outcome assessment system. It is hoped that the proposed model can ultimately help to meet the program outcomes requirements in the engineering accreditation criteria.

Effect of Crop Rotation System on Soil Chemical Properties and Ginseng Root Rot after Harvesting Ginseng (인삼 연작지에서 윤작물 작부체계가 토양화학성 및 인삼뿌리썩음병 발생에 미치는 영향)

  • Lee, Sung Woo;Lee, Seung Ho;Park, Kyung Hoon;Jang, In Bok;Jin, Mei Lan;Seo, Moon Won
    • Korean Journal of Medicinal Crop Science
    • /
    • v.25 no.4
    • /
    • pp.244-251
    • /
    • 2017
  • Background: The application of crop rotation systems may reduce the occurrence of soil-borne diseases by releasing allelochemicals and by subsequent microbial decomposition. Methods and Results: For reduction of ginseng root rot by the crop rotation system, after harvesting 6-year-old ginseng, fresh ginseng was grown along with continuous cultivation of sweet potato, peanut, and bellflower. Growth of 2-year-old ginseng was significantly inhibited in the continuous cultivation than in the first cultivation. Sweet potato, peanut and bellflower cultivations assisted in obtaining normal yields of ginseng in the first year after the harvest of 6-year-old ginseng. Salt concentration, potassium and sodium contents were gradually decreased, and, organic matter was gradually increased through cirp rotation. Phosphate, calcium and magnesium contents were not altered. The density of the root rot fungus was gradually decreased by the increase in crop rotation; however it was decreased distinctly in the first year compared to the second and third year. The severity of root rot disease tended to decrease gradually by the increase of crop rotation. Conclusions: Short-term crop rotation for three years promoted the growth of ginseng, however root rot infection was not inhibited significantly, although it was somewhat effective in lowering the density of the root rot pathogen.

Removal of Nutrients from Stream Water Polluted with Nonpoint Source Pollution by Cultivation of Phytoplankton. (비점오염원으로부터 오염된 하천수에서 식물플랑크톤 배양을 이용한 영양염류 제거)

  • Cho, Ahn-Na;Jung, Da-Woon;Jung, You-Jung;Choi, Seung-Ik;Ahn, Tae-Seok
    • Korean Journal of Ecology and Environment
    • /
    • v.42 no.2
    • /
    • pp.153-160
    • /
    • 2009
  • A phytoplankton cultivation system was installed and operated for removal of nutrients from stream water polluted by nonpoint source pollution. The system was a continuous-flow culture comprising a phytoplankton tank that received inflow from a storage reservoir. When the system was operated as a batch culture for the purpose of determining hydraulic retention time (HRT), the proper HRT value was three days, and the removal rate of TP and TN averaged 70% and 44%, respectively. When the system was operated with the continuous flow from a stream for 45 days, 53.9% of TP and 53.1% of TN were removed as sludge. Due to active growth of phytoplankton, pH and dissolved oxygen in the phytoplankton tank were extremely high, reaching 10.8 and 16mg $L^{-1}$, respectively. It was concluded that nutrients can be effectively removed from polluted stream waters by cultivating phytoplankton.

Emission of Green House Gases in the Agricultural Environment -1. The Cropping System and Emission of the Green House Gases-CO2, CH4, N2O)-under Different Cropping System (농작물(農作物) 재배환경(栽培環境)과 지구온난화(地球溫暖化) 원인(原因)가스 발생(發生) -1. 답전전환시(畓田轉換時) 작부체계(作付體系)와 지구온난원인기체(地球溫暖原因氣體) -이산화탄소(二酸化炭素), 메탄, 아산화질소(亞酸化窒素)- 발생(發生))

  • Lee, Sang-Kyu;Suh, Jang-Sun
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.26 no.1
    • /
    • pp.49-56
    • /
    • 1993
  • The net flux of global green house gases such as carbon dioxide($CO_2$), methane($CH_4$), and nitrous oxide($N_2O$) emitted from the rotation of paddy-upland soil during growing sesaon under different cropping system was determined. The results obtained were summarized as follows : 1. The net flux of $CO_2$ during the growing season was the highest from continuous cultivation of rice but the lowest from rotation cultivation of rice-soybean. Under the different cropping system the highst emission was from soil of continuous cultivation of rice, but the lowest from converted system. 2. The net emission of methane was the highest from the sold of continuous cultivation of rice, but the flux was remarkably decreased by differing the cropping system. 3. $N_2O$ was emitted greatly from the every two year rotation of potato-chinese cabbage and the next rank was from continuous cultivation of rice, but was decreased notably from rotation cultivation of rice-soybean and potato-chinese cabbage under rotation of paddy-upland cropping system. 4. The ratio of oxygen and carbon dioxide in the soil air was much different with glowing season, the ratio was varied with 4~10 percents for oxygen and 1~22 percents for carbon dioxide. The ratio of carbon dioxide was dozens or hundreds times to that of air, and the variation was very high also. 5. The emission of global green house gases such as carbon dioxide, methane and nitrous oxide was affected by the moisture, temperature and nutrients of soils and the growth period of crops.

  • PDF

Effects of Soil Textures by Soil Addition on the Growth and Quality of Oriental Melon (Cucumis melo L. var. makuwa Mak.) under Protected Cultivation (객토시 토성이 시설참외의 생육과 품질에 미치는 영향)

  • ;;;;Khan Zakaullah
    • Journal of Bio-Environment Control
    • /
    • v.13 no.3
    • /
    • pp.156-161
    • /
    • 2004
  • This study was conducted to investigate the effects of soil amendment with different characteristics on plant growth, fruit yield and quality of oriental melon for continuous cropping under protected cultivation. Humus layers in arable soil was disturbed because soil amendment from hillside to oriental melon field was continued to resolve problems for continuous cropping. Water potential and hardness of soil was decreased in sandy loam with lower clay contents compared with loam and silty clay. Leaf length and area, fresh and dry weight of plant at earlier growing stage were higher, but chlorophyll contents of leaves were dropped in sandy loam compared with silty clay soil. Fruit size and weight was higher in sandy loam, but soluble solid and color of fruit were increased in silty clay. Marketable and unmarketable yield and quantity of fermented fruit were the highest in sandy loam. Hardness and weight of fruit were decreased by longer storage period and soluble solids of fruit was peaked at 5 day after storage, but decreased by prolonged continued storage. Because of these results, soil characteristics of amendment to oriental melon field should be considered as an important factor for quality and yield of oriental melon.