• Title/Summary/Keyword: continuous bridge

Search Result 548, Processing Time 0.034 seconds

Parameter Study for Long-Span Bridge of High-Speed Railway considering CWR Axial Force (장대레일 축력을 고려한 고속철도 특수교량의 변수별 분석)

  • Lee, Jong-Soon;Cho, Soo-Ik;Park, Man-Ho;Joo, Hwan-Joong;Nam, Hyoung-Mo
    • Proceedings of the KSR Conference
    • /
    • 2010.06a
    • /
    • pp.1452-1459
    • /
    • 2010
  • Application of long-span bridge, which is affected by parameters such as span length, shoe boundary condition, track property and stiffness of superstructure and substructure etc., can vary. Especially, by CWR aspects of the axial force, that can be less constraints of construction depending on whether the application of rail expansion joint(REJ), which has disadvantaged in terms of maintenance. In this study, it was performed parameter study for multiple variables (shaft length, the upper and lower cross-section characteristics, track characteristics, etc.) in terms of CWR aspects. Structure-rail interaction analysis was applied to the typical simple span PSC Box and 3 span continuous bridge Extradosed Bridge(50m+80m+50m) excluding REJ. If you set the boundary e of variables for long-span railway bridge excluding REJ through the this study, when designing future is expected to be able to useful.

  • PDF

Design of New Current Full-Bridge Resonant Inverter for Induction Heating System (유도가열 시스템을 위한 새로운 전류형 풀-브릿지 공진형 인버터 설계)

  • Lee, Sang-Hun;Lim, Sang-Kil;Song, Seung-Gun
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.26 no.7
    • /
    • pp.59-69
    • /
    • 2012
  • There are two types of inverters that are generally used in induction heating systems: voltage type inverters and high-frequency half-bridge inverters. This paper proposes a new resonant inverter for induction heating systems using the current type full-bridge method. The proposed method can remove capacitors at the input end, and enables unity power factor operation by preventing phase differences of voltage and current. Furthermore, Zero Voltage Switching (ZVS) which is in tune with current type inverter can be adopted and continuous power adjustment is possible through duty ratio changes and frequency modulation in switching operation. Simulations and experiments showed that the proposed current type full-bridge resonant inverter could be used for unity power factor control and ZVS operation in induction heating systems.

Analysis of CWR track on the High-Speed Railway Bridges considering the Expansion Length of Bridge Deck (고속철도교량의 온도신축길이 변화를 고려한 교량상 장대레일의 거동 해석)

  • Kang Jae-Yoon;Kim Byung-Suk;Kwark Jong-Won;Choi Eun-Suk;Chin Won-Jong
    • Proceedings of the KSR Conference
    • /
    • 2004.10a
    • /
    • pp.806-811
    • /
    • 2004
  • Currently, in the design criteria for the high speed railway bridges, the maximum distance between bridge expansion joint is limited to 80m using a continuous welded mil, in order to limit the additional stress in the rail due to the rail-bridge interaction. In the past study on the resonance effect of HSR train, it is known that the reduction of resonance and dynamic responses of bridge deck occurs at the specific expansion length of 28.05m and 46.75m. In this study, the stability of track structure on the HSR bridges with expansion length of 90m has checked by finite element method. And the track behavior including mil stresses and relative displacements are compared to the current state of track structures on the bridge system with 80m long expansion length.

  • PDF

Strategy of LMC Application at Bridge Overlay in Korea (LMC 교면포장공법의 국내 도입 방안)

  • 김기헌;윤경구;박상일;홍창우;이주형
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10b
    • /
    • pp.1063-1068
    • /
    • 2000
  • Latex modified concrete (LMC) has grown to be accepted as a standard material of construction overlaying bridge decks in America due to its superior physical and chemical properties. The properties of latex, combined with the low water-cement ratio, produce a concrete that has improved flexural, tensile, and bond strength, lower modulus of elasticity, increased freeze-thaw resistance, and reduced permeability compared to conventional concrete of similar mix design. LMC overlays have been service in excellence for 30 years on thousands of bridge in U.S.A. This may, also, prolong the life cycle of bridge deck once it is adopted in Korea. The self-contained, mobile, continuous mixer is most appropriate particularly for concrete quality assurance. Assuring quality on a bridge deck overlay project should begin in the design phase and continue after the construction is completed. Quality should be the concern of everyone involved-owner, designer, and contractor.

Seismic Risk Assessment of Piers Using Fragility Analysis (취약도 분석을 통한 교각의 지진위험도 평가)

  • Lee, Dae-Hyoung;Kim, Hyun-Jun;Park, Chang-Kyu;Chung, Young-Soo
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2006.03a
    • /
    • pp.261-268
    • /
    • 2006
  • This study represents results of fragility curve development for 3-span continuous bridge. To research the response of bridge under earthquake excitation, Monte Carlo simulation is performed to study nonlinear dynamic analysis. Because of limited number of real time histories from the Korean peninsula, a set of 150 synthetic time histories were generated. Fragility corves in this study are represented by lognormal distribution functions with two parameters and developed as a function of PGA. Five damage states were defined to express the condition of damage based on the actual experimental damage data of bridge column. As a result of this research, the value of damage probability corresponding to each damage state were determined. This approach may be used in constructing the fragility curves for all of bridge structure and, by extension, in constructing the seismic hazard map.

  • PDF

The Loading History Effect on the Track-bridge Interaction (궤도-교량의 상호작용에 대한 하중이력의 영향)

  • Yun, Kyung-Min;Han, Sang-Yun;Hwang, Man-Ho;Kim, Hae-Gon;Lim, Nam-Hyoung
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.3156-3159
    • /
    • 2011
  • In case of the continuous welded rail(CWR) track is supported by the railway bridge, the additional axial force is occurred in the CWR due to the track-bridge interaction. In the various design codes such as Korean code, European code, UIC code, etc, three important loads(temperature variation in the bridge-deck, braking/acceleration and the bending of the bridge-deck resulted from the passing train) are treated as the independent loading case. In other words, the additional axial force can be obtained by summing up the three different values calculated by the three independent analysis. However, this analysing method may have an error because the behavior of the longitudinal resistance between the rail and the bridge-deck is under the highly nonlinear. Therefore, in order to exactly analyse the track-bridge interaction, nonlinear loading history and the change of the longitudinal resistance owing to the loading history must be considered in the analysis process. In this study, the loading history effect on the track-bridge interaction is investigated considering the resonable combination of three loads and the longitudinal resistance change.

  • PDF

Seismic analysis of bridges based on stress-dependent damping

  • Su, Li;Wang, Yuanfeng;Li, Pengfei;Mei, Shengqi;Guo, Kun
    • Structural Engineering and Mechanics
    • /
    • v.62 no.3
    • /
    • pp.281-289
    • /
    • 2017
  • Damping value has considerable influence on the dynamic and seismic behaviors of bridges. However, currently the constant damping ratios that are prescribed by most bridge seismic design codes can't truly represent the complicated damping character of actual structures. In this paper, a cyclic loading experiment was conducted to study the effect of stress amplitude on material damping of concrete to present an analyzing model of the material damping of concrete. Furthermore, based on the fundamental damping of structure measured under ambient vibration, combined with the presented stress-dependent material damping concrete, the seismic response of a bridge pier was calculated. Comparison between the calculated and experiment results verified the validity of the presented damping model. Finally, a modified design and analysis method for bridge was proposed based on stress-dependent damping theory, and a continuous rigid frame bridge was selected as the example to calculate the actual damping values and the dynamic response of the bridge under different earthquake intensities. The calculation results indicated that using the constant damping given by the Chinese seismic design code of bridges would overestimate the energy dissipation capacity of the bridge.

Earthquake response of isolated cable-stayed bridges under spatially varying ground motions

  • Ates, Sevket;Soyluk, Kurtulus;Dumanoglu, A. Aydin;Bayraktar, Alemdar
    • Structural Engineering and Mechanics
    • /
    • v.31 no.6
    • /
    • pp.639-662
    • /
    • 2009
  • A comprehensive investigation of the stochastic response of an isolated cable-stayed bridge subjected to spatially varying earthquake ground motion is performed. In this study, the Jindo Bridge built in South Korea is chosen as a numerical example. The bridge deck is assumed to be continuous from one end to the other end. The vertical movement of the stiffening girder is restrained and freedom of rotational movement on the transverse axis is provided for all piers and abutments. The longitudinal restraint is provided at the mainland pier. The A-frame towers are fixed at the base. To implement the base isolation procedure, the double concave friction pendulum bearings are placed at each of the four support points of the deck. Thus, the deck of the cable-stayed bridge is isolated from the towers using the double concave friction pendulum bearings which are sliding devices that utilize two spherical concave surfaces. The spatially varying earthquake ground motion is characterized by the incoherence and wave-passage effects. Mean of maximum response values obtained from the spatially varying earthquake ground motion case are compared for the isolated and non-isolated bridge models. It is pointed out that the base isolation of the considered cable-stayed bridge model subjected to the spatially varying earthquake ground motion significantly underestimates the deck and the tower responses.

The smart PFD with LRB for seismic protection of the horizontally curved bridge

  • Kataria, N.P.;Jangid, R.S.
    • Smart Structures and Systems
    • /
    • v.17 no.5
    • /
    • pp.691-708
    • /
    • 2016
  • Recently, number of smart material are investigated and widely used in civil construction and other industries. Present study investigates the application of smart semi-active piezoelectric friction damper (PFD) made with piezoelectric material for the seismic control of the horizontally curved bridge isolated with lead rubber bearing (LRB). The main aim of the study is to investigate the effectiveness of hybrid system and to find out the optimum parameters of PFD for seismic control of the curved bridge. The selected curved bridge is a continuous three-span concrete box girder supported on pier and rigid abutment. The PFD is located between the deck and abutments or piers in chord and radial directions. The bridge is excited with four different earthquake ground motions with all three components (i.e. two horizontal and a vertical) having different characteristics. It is observed that the use of semi-active PFD with LRB is quite effective in controlling the response of the curved bridge as compared with passive system. The incorporation of the smart damper requiring small amount of energy in addition with an isolation system can be used for effective control the curved bridge against the dynamic loading.

Structural health monitoring data reconstruction of a concrete cable-stayed bridge based on wavelet multi-resolution analysis and support vector machine

  • Ye, X.W.;Su, Y.H.;Xi, P.S.;Liu, H.
    • Computers and Concrete
    • /
    • v.20 no.5
    • /
    • pp.555-562
    • /
    • 2017
  • The accuracy and integrity of stress data acquired by bridge heath monitoring system is of significant importance for bridge safety assessment. However, the missing and abnormal data are inevitably existed in a realistic monitoring system. This paper presents a data reconstruction approach for bridge heath monitoring based on the wavelet multi-resolution analysis and support vector machine (SVM). The proposed method has been applied for data imputation based on the recorded data by the structural health monitoring (SHM) system instrumented on a prestressed concrete cable-stayed bridge. The effectiveness and accuracy of the proposed wavelet-based SVM prediction method is examined by comparing with the traditional autoregression moving average (ARMA) method and SVM prediction method without wavelet multi-resolution analysis in accordance with the prediction errors. The data reconstruction analysis based on 5-day and 1-day continuous stress history data with obvious preternatural signals is performed to examine the effect of sample size on the accuracy of data reconstruction. The results indicate that the proposed data reconstruction approach based on wavelet multi-resolution analysis and SVM is an effective tool for missing data imputation or preternatural signal replacement, which can serve as a solid foundation for the purpose of accurately evaluating the safety of bridge structures.