• Title/Summary/Keyword: continuous $H_2$ production

Search Result 268, Processing Time 0.031 seconds

Continuous Ethanol Production Using immobilized Baker's Yeast (고정화 효모를 이용한 연속적 에탄올 생산)

  • 한면수;하상도;정동효
    • Microbiology and Biotechnology Letters
    • /
    • v.19 no.4
    • /
    • pp.398-404
    • /
    • 1991
  • - Ethanol production by calcium alginate-immobilized baker's yeast was studied in the continuous shaked-flask reactor (CSFR) using glucose medium as a feed. Immobilized cells were stable at 30~$37^{\circ}C$ and pH 4~8. Fermentation characteristics of immobilized baker's yeast were examined changing the initial glucose concentration employed were 50, 100 and 150 g/l, respectively. It was investigated that the influent glucose concentration and the dilution rate have an influence on the ethanol fermentation characteristics at steady state in continuous culture of immobilized baker's yeast. The optimum conditions for high ethanol productivity and low residual glucose output in ethanol prodution were shown to be 0.2 h ' for the dilution rate and 150 g/l for the influent glucose concentration. The maximum ethanol productivity, ethanol yield, specific growth rate and glucose conversion rate were around 7.12 g/$l\cdot h$, 0.23, 0.366 g/$l\cdot h$ and 78.43, respectively.

  • PDF

Continuous Anaerobic H2 Production with a Mixed Culture (혐기성 수소 생산 공정의 연속운전)

  • Kim, Sang-Hyoun;Han, Sun-Kee;Youn, Jong-Ho;Shin, Hang-Sik
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.11 no.1
    • /
    • pp.70-76
    • /
    • 2003
  • Continuous anaerobic hydrogen production with a mixed culture was investigated. With a sucrose concentration of 5g COD/L in the feed, hydrogen production exceeded $0.5mole\;H_2/mole\;hexose$ was found at the early stage, however it did not maintain longer than 9days. It was assumed that the failure was caused by insufficient active hydrogen producing bacteria in the reactor. Therefore, effects of pH control, repeated heat treatment and substrate concentration on sustainable continuous anaerobic hydrogen production was examined to find out operating conditions to sustainable hydrogen production. Decrease of hydrogen production was not overcome by only pH control at 5.3. Repeated heat treatment could recover hydrogen producing activity without any external inoculum supply. However, frequent heat treatment was needed because the treated sludge also showed the tendency in decrease of hydrogen production. With a sucrose concentration of 30g COD/L in the feed, hydrogen production maintained $1.0-1.4mole\;H_2/mole\;hexose$ in continuously stirred tank reactor and $0.2-0.3mole\;H_2/mole\;hexose$ in anaerobic sequencing batch reactor) for 24days. More than 90% of soluble organics in effluent was organic acids, in which n-butyrate was the most one.

  • PDF

Enhanced Production of hGM-CSF by Immobilized Transgenic Plant Cell Cultures (형질전환된 식물세포에서 고정화 방법을 통한 hCM-CSF의 생산성 증대 연구)

  • Noha, Yun-Sook;Nama, Hyung-Jin;Choi, Hong-Yeol;Tak, Sa-Ra;Kim, Dong-Il
    • KSBB Journal
    • /
    • v.30 no.2
    • /
    • pp.82-90
    • /
    • 2015
  • Plant cell immobilization can protect plant cells from shear forces and increase the stability of gene. An additional advantage of immobilization is the easiness for performing continuous culture with cell recycling. Therefore plant cell immobilization can overcome the limitations of plant cell applications. In addition, target protein should be selected from pharmaceutical proteins to get rid of low expression level problem. The enhanced production of human granulocyte-macrophage colony-stimulating factor (hGM-CSF) was investigated in immobilized Nicotiana tabacum suspension cell cultures. When the cells were immobilized in polyurethane foam, specific production of hGM-CSF was higher than that in alginate bead immobilization. Optimum continuous culture condition was the addition of 60 g/L sucrose in growth media with exchanging media every 6 day. Under the same condition, specific hGM-CSF production was 7 times higher in a 500-mL spinner flask than that in 100-mL Erlenmeyer flasks. Therefore, development of an effective immobilization process would be possible when the advantage of easy cell recycling was used. Consequently, enhanced production of target proteins could be possible in immobilized continuous cultures when the advantages of immobilization were applied.

Continuous Production of Lactosucrose by Immobilized Sterigmatomyces elviae Mutant

  • Lee, Jong-Ho;Lim, Jung-Soo;Park, Chul-Hwan;Kang, Seong-Woo;Shin, Hyun-Yong;Park, Seung-Won;Kim, Seung-Wook
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.9
    • /
    • pp.1533-1537
    • /
    • 2007
  • In this study, in order to develop a continuous production process of lactosucrose in a packed-bed reactor, Sterigmatomyces elviae ATCC 18894 was selected and mutated. The mutant strain of S. elviae showed 54.3% higher lactosucrose production than the wild type. Reaction conditions such as temperature, pH, substrate concentration and flow rate were also optimized. Under optimized reaction conditions ($50^{\circ}C$, pH 6.0, 25% sucrose and 25% lactose as substrate, flow rate 1.2 ml/min), the maximum concentration of lactosucrose (192 g/l) was obtained. In a packed-bed reactor, continuous production of lactosucrose was performed using S. elviae mutant immobilized in calcium alginate, and about 180 g/l of lactosucrose production was achieved for 48 days.

Optimization of Culture Conditions and Continuous Production of Chitosan by the Fungi, Absidia coerulea

  • Kim, Woo-Jun;Lee, Woo-Gi;Kalaimahan Theodore;Chang, Ho-Nam
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.6 no.1
    • /
    • pp.6-10
    • /
    • 2001
  • The production of chitosan from the mycelia of Absidia coerulea was studied to improve cell growth and chitosan productivity. Culture conditions were optimized in batch cultivation (pH 4.5, agitator speed of 250 rpm, and aeration rate of 2 vvm) and the maximum chitosan concentration achieved was 2.3g/L under optimized conditions. Continuous culture was carried out successfully by the formation of new growth spots under optimized conditions, with a chitosan productivity of 0.052g/L(sup)-1 h(sup)-1, which is the highest value to date, and was obtained at a dulution rate of 0.05h(sup)-1. Cell chitosan concentrations reached about 14% in the steady state, which is similar to that achieved in batch culture. This study shows that for the continuous culture of Absidia coerulea it is vital to control the medium composition.

  • PDF

Production of Beijerinckia indica HS-2001 in Fed-batch and continuous culture.

  • Yang, Jae-Gyun;Seo, Hyeong-Pil;Sin, Myeong-Gyo;Lee, Jin-U
    • 한국생물공학회:학술대회논문집
    • /
    • 2003.04a
    • /
    • pp.245-248
    • /
    • 2003
  • As a result of broth substitutions when each culture-mediums were difference, whole culture-medium was found to be best feeding solution for production of PS-7 by B. indica. Maximal production of PS-7 was 1$10.0\;g/{\ell}$ and its conversion rate from 2% (w/v) glucose to PS-7 was 50%. After 48 hr, 50%(v/v) medium of working volume began to substitute in 7L jar fermenter. Production of PS-7 increased after 48hr, recovered productivity of PS-7. Following this preliminary culture, the resultant culture was subjected to continuous flow conditions controlled that the dilution rate were $0.01\;{\sim}\;0.04\;h^{-1}$. Production of PS-7 increased at dilution rate $0.0100\;h^{-1}$ whereas productivity of PS-7 decreased gradually in dilution rate $0.0200\;{\sim}\;0.0400\;h^{-1}$. Maximal production of PS-7 was $10.0\;g/{\ell}$ in continuous culture.

  • PDF

Comparison of Immobilization Matrix for Ethanol Fermentation by Zymomonas mobilis and Saccharomyces cerevisiae

  • Ryu, Sang-Ryeol;Lee, Ke-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.7 no.6
    • /
    • pp.438-440
    • /
    • 1997
  • A continuous fermentation system employing immobilized cells of Zymomonas mobilis and Saccharomyces cerevisiae was studied for the mass production of ethanol. Ethanol production by cells immobilized with Ca-alginate was better than those by cells immobilized with K-carrageenan. Maximum ethanol production employing a continuous system by cells immobilized with Ca-alginate was 77.5 $g.l^{-1}h^{-1}$ at a dilution rate of 1.85 $h^{-1}$ with 82% conversion rate for Z. mobilis while that was 40.2 $g.l^{-1}h^{-1}$ at a dilution rate of 0.92 $h^{-1}$ with 85% conversion rate for S. cerevisiae. These results suggest that Ca-alginate is a better cell immobilization matrix than K-carrageenan and that immobilized cells of Z. mobilis are more efficient than S. cerevisiae for ethanol production.

  • PDF

Production of Sorbitol Using Dried and Immobilized Zymomonas mobilis (건조 고정화 Zymomonas mobilis에 의한 sorbitol 생산)

  • 박철진;장기효전억한
    • KSBB Journal
    • /
    • v.7 no.2
    • /
    • pp.144-148
    • /
    • 1992
  • The purpose of this study is to develop a continuous process for sorbitol production using dried Zymomonas mobilis immobilized in K-carrageenan. The methods of glularaldehyde cross-linking of enzymes in CTAB (celyltrimetylammoniumbromide) treated cells immobilized in K-carrageenan showed stability for the production of sorbitol for 30 days of operation. K-carrageenan beads entrapping permeabilized cells were dried to Improve bead rigidity and storage stability. A semi-batch process with dry beads was carried out and only a small loss of enzyme activity (less than 8%) was observed during 72h. The value of Vmax for the dry K-carrageenan beads was found to be one half or that for free cells. It was shown that the productivities of the continuous process with wet K-carrageenan beads and dry beads at a dilution rate 0.1h-1 were 3.4g/L-h and 2.88h/L-h, respectively.

  • PDF

Biohydrogen production using photosynthesis (광합성을 이용한 바이오수소 생산)

  • Sim, Sang-Jun;Kim, Jun-Pyo
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.478-481
    • /
    • 2006
  • Energy is vital to global prosperity, yet dependence on fossil fuels as our primary energy source contributes to global climate change environmental degradation, and health problems. Hydrogen $(H_2)$ offers tremendous potential as a clean renewable energy currency. Hydrogen has the highest gravimetric energy density of any known fuel and is compatible with electrochemical and combustion processes for energy conversion without producing carbon-based emission that contribute to environmental pollution and climate change. Numerous methodologies have been developed for effective hydrogen production. Among them, the biological hydrogen production has gained attention, because hydrogen can be produced by cellular metabolismunder the presence of water and sunlight. The green alga Chlamydomonas reinhardtii is capable of sustained $H_2$ photoproduction when grown under sulfur deprived condition. Under sulfur deprived conditions, PSII and photosynthetic $O_2$ evolution are inactivated, resulting in shift from aerobic to anaerobic condition in the culture. After anaerobiosis, sulfur deprived algal cells induce a reversible hydrogenase and start to evolve $H_2$ gas in the light. According to above principle, we investigated the effect of induction parameters such as cell age, cell density. light intensity, and sulfate concentration under sulfur deprived condition We also developed continuous hydrogen production system by sulfate re-addition under sulfur deprived condition.

  • PDF

Continuous Production of Fructooligosaccharides Using Fructosyltransferase Immobilized on Ion Exchange Resin

  • Yun, Jong-Won;Song, Seung-Koo
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.1 no.1
    • /
    • pp.18-21
    • /
    • 1996
  • A continuous production of fructooligosaccharides from sucrose was investigated by fructosyltransferase immobilized on a high porous resin, Diaion HPA25. The optimum pH(5.5) and temperature(55$^{\circ}C$) of the enzyme for activity was unaltered by immobilization, and the immobilized enzyme became less sensitive to the pH change. The optimal operation conditions of the immobilized enzyme column for maximizing the productivity were as follows: 600g/L of sucrose feed concentration, flow rate of superficial space velocity 2.7h-1. When the enzyme column was run at 50$^{\circ}C$, about 8% loss of the initial activity of immobilized enzyme was observed after 30 days of continuous operation, during which high productivity of 1174g/L$.$h was achieved. The kinds of products obtained using the immobilized enzyme were almost the same as those using soluble enzymes or free cells.

  • PDF