Browse > Article

Continuous Production of Lactosucrose by Immobilized Sterigmatomyces elviae Mutant  

Lee, Jong-Ho (Department of Chemical and Biological Engineering, Korea University)
Lim, Jung-Soo (Digital Appliances R&D Team, Samsung Electronics Co. Ltd.)
Park, Chul-Hwan (Department of Chemical Engineering, Kwangwon University)
Kang, Seong-Woo (Department of Chemical and Biological Engineering, Korea University)
Shin, Hyun-Yong (Department of Chemical and Biological Engineering, Korea University)
Park, Seung-Won (Food Ingredient Division, CJ Food R&D, CJ Corp.)
Kim, Seung-Wook (Department of Chemical and Biological Engineering, Korea University)
Publication Information
Journal of Microbiology and Biotechnology / v.17, no.9, 2007 , pp. 1533-1537 More about this Journal
Abstract
In this study, in order to develop a continuous production process of lactosucrose in a packed-bed reactor, Sterigmatomyces elviae ATCC 18894 was selected and mutated. The mutant strain of S. elviae showed 54.3% higher lactosucrose production than the wild type. Reaction conditions such as temperature, pH, substrate concentration and flow rate were also optimized. Under optimized reaction conditions ($50^{\circ}C$, pH 6.0, 25% sucrose and 25% lactose as substrate, flow rate 1.2 ml/min), the maximum concentration of lactosucrose (192 g/l) was obtained. In a packed-bed reactor, continuous production of lactosucrose was performed using S. elviae mutant immobilized in calcium alginate, and about 180 g/l of lactosucrose production was achieved for 48 days.
Keywords
Continuous production; lactosucrose; packed-bed reactor; Sterigmatomyces elviae mutant; whole-cell immobilization;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
Times Cited By Web Of Science : 0  (Related Records In Web of Science)
연도 인용수 순위
1 Cruz, R., M. Z. Belini, J. G. Belote, and C. R. Vieira. 1998. Production of fructooligosaccharids by the mycelia of Aspergillus japonicus immobilized in calcium alginate. Bioresource Technol. 65: 139-143   DOI
2 Lim, J. S., S. W. Park, J. W. Lee, K. K. Oh, and S. W. Kim. 2005. Immobilization of Penicillium citrinum by entrapping cells in calcium alginate for the production of neofructooligosaccharides. J. Microbiol. Biotechnol. 15: 1317-1322   과학기술학회마을
3 Park, M. C., J. S. Lim, J. C. Kim, S. W. Park, and S. W. Kim. 2005. Continuous production of neo-fructooligosaccharides by immobilization of whole cells of Penicillium citrinum. Biotechnol. Lett. 27: 127-130   DOI   ScienceOn
4 Kim. J. M., C. H. Park, S. W. Kim, and S. Y. Kim. 2006. Flux optimization using genetic algorithms in membrane bioreactor. J. Microbiol.Biotechnol. 16: 863-869   과학기술학회마을
5 Park, N. H., H. J. Choi, and D. K. Oh. 2005. Lactosucrose production by various microorganisms harboring levansucrase activity. Biotechnol. Lett. 27: 495-497   DOI   ScienceOn
6 Kawase, M., A. Pilgrim, T. Araki, and K. Hashimoto. 2001. Lactosucrose production using a simulated moving bed reactor. Chem. Eng. Sci. 56: 453-458   DOI   ScienceOn
7 Takaichi, A., T. Okamoto, Y. Azuma, Y. Watanabe, T. Matsumoto, K. Miyata, S. Sakamoto, H. Okamatsu, and M. Kumemura. 1994. U.S. Patent 5455235
8 Yun, J. W., J. S. Nob, M. G. Lee, and S. K. Song. 1993. Production of fructo-oligosaccharides by the mixed-enzyme system of fructosyltransferase and glucose isomerase. J. Korean Ind. Chem. Eng. 31: 846-851
9 Choi, H. J., C. S. Kim, P. Kim, H. C. Jung, and D. K. Oh. 2004. Lactosucrose bioconversion from lactose and sucrose by whole cells of Paenibacillus polymyxa harboring levansucrase activity. Biotechnol. Prog. 20: 1876-1879   DOI   ScienceOn
10 Seo, H. P., K. I. Jo, C. W. Son, J. K. Yang, C. H. Chung, S. W. Nam, S. K. Kim, and J. W. Lee. 2006. Continuous production of pullulan by Aureobasidium pullulans HP-2001 with feeding of high concentration of sucrose. J. Microbiol. Biotechnol. 16: 374-380   과학기술학회마을
11 Fujita, K., K. Hara, H. Hashimoto, and S. Kitahara. 1990. Purification and some properties of $\beta$-fructofuranosidase I from Arthrobacter sp. K-1. Agric. Biol. Chem. 54: 913-919   DOI   ScienceOn
12 Oku, T. and S. Nakamura. 2003. Comparison of digestibility and breath hydrogen gas excretion of fructo-oligosaccharide, galactosyl-sucrose, and isomalto-oligosaccharides in healthy human subjects. Eur. J. Clin. Nutr. 57: 1150-1156   DOI   ScienceOn
13 Yun, J. W., K. W. Jung, Y. J. Jeon, and J. H. Lee. 1992. Continuous production of fructo-oligosaccharides from sucrose by immobilized cells of Aureobasidium pullulans. J. Microbiol. Biotechnol. 2: 98-101
14 Fujita, K., K. Hara, H. Hashimoto, and S. Kitahara. 1990. Transfructosylation catalyzed by $\beta$-fructofuranosidase I from Arthrobacter sp. K-1. Agric. Biol. Chem. 54: 2655-2661   DOI
15 Kim, K. A., B. S. Noh, J. K. Lee, S.Y. Kim, Y. C. Park, and D. K. Oh. 2000. Optimization of culture condition for erythritol production by Torula sp. J. Microbiol. Biotechnol. 10: 69-74
16 Chung, C. H. 2006. Production of glucooligosaccharides and mannitol from Leuconostoc mesenteroides B-742 fermentation and its separation from byproducts. J. Microbiol. Biotechnol. 16: 325-329   과학기술학회마을
17 Fiedurek, J., J. Pielecki, and M. Skowronek. 2000. Direct methods for selecting mutants with increased production of invertase from mutagenized cultures of Aspergillus fumigatus. J. Basic Microb. 40: 111-118   DOI   ScienceOn
18 Kabusuiki, K., S. Hayasibara, and K. Kagaku. 1992. U.S. Patent 5130239
19 Lee, J. C., K. Na, J. M. Yun, and J. K. Hwang. 2001. In vitro bifidogenic effect of nondigestible oligosaccharides isolated from red ginseng marc. J. Microbiol. Biotechnol. 11: 858-862
20 Pilgrim, A., M. Kawase, M. Ohashi, K. Fujita, K. Murakami, and K. Hashimoto. 2001. Reaction kinetics and modeling of the enzyme-catalyzed production of lactosucrose using $\beta$-fructofuranosidase from Arthrobacter sp. K-1. Biosci. Biotechnol. Biochem. 65: 758-765   DOI   ScienceOn