• Title/Summary/Keyword: contingency selection

Search Result 30, Processing Time 0.028 seconds

Contingency Selection Using Eigen-Sensitivity Analysis for Voltage Stability. (고유치감도 해석에 의한 전압안정도의 상정사고 선택)

  • Song, S.G.;Nam, H.K.;Shim, K.S.;Moon, Y.H.;Choi, H.K.;NamKung, J.Y.
    • Proceedings of the KIEE Conference
    • /
    • 2000.07a
    • /
    • pp.66-68
    • /
    • 2000
  • The Eigen analysis in large power system provides much useful information that is not got in nose curve. The branch participation factor is not quantitative information and is an indirect method calculating incremental change in branch reactive loss. But the Eigen sensitivity analysis to each mode is direct and provides of quantitative information but this method because of needing much time is used in large power system. In this paper the Hessenberg method is used to obtaining dominant eignvalues and corresponding eigenvectors of Jacobian matrix. Ranking the critical contingencies is done by computing the Eigen sensitivity of each dominant eignvalues for changes of each line. The proposed algorithm is tested on the New England 30-bus system and KEPCO system in the year of 2000, which comprises of 791-bus and 2500-branches.

  • PDF

A Novel Method of Clustering Critical Generator by using Stability Indices and Energy Function (안정도 지수와 에너지 마진을 이용한 불안정 발전기의 clustering 법)

  • Chang, Dong-Hwan;Jung, Yun-Jae;Chun, Yeong-Han;Nam, Hae-Kon
    • Proceedings of the KIEE Conference
    • /
    • 2005.07a
    • /
    • pp.136-139
    • /
    • 2005
  • On-line dynamic security assessment is becoming more and more important for the stable operation of power systems as load level increases. The necessity is getting apparent under Electricity Market environments due to more various operating conditions. Fast transient stability analysis tool is required for contingency selection. The TEF(Transient Energy Function) method is a good candidate for this purpose. The clustering of critical generators is crucial for the precise and fast calculation of energy margin. In this paper, we propose a new method for fast decision of mode of instability by using stability indices. Case study shows very promising results.

  • PDF

The Analysis For Reliability In Multi-dividing Multi-connecting High Power Distribution System (배전계통 연계에 따른 신뢰도 향상 분석)

  • Cho, Nam-Hun;Ha, Bok-Nam;Kang, Moon-Ho;Lee, Heung-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2001.05a
    • /
    • pp.316-318
    • /
    • 2001
  • Occasionally, equipment in a distribution system fails due to damage from weather, vandalism, or other causes. In addition, it is recommended practice to have some way in which maintenance or replacement of every element in a system can be performed without causing lengthy interruption of electrical service to the customers it feeds. Thus, alternate sources, paths, and configurations of service must be planned so that both failures and maintenance do not affect customer service beyond a reasonable amount. In some cases, planning for alternate routes of service during equipment outages or emergencies -- will be the major aspect influencing selection of a feeder's capacity, type of route, or layout. We want to know the relationship between molt-dividing multi-connection and distribution reliability for contingency support considerations.

  • PDF

Enhancement of Voltage Stability by Generation Redispatch (발전력 재분배에 의한 전압안정도 향상)

  • Nam, Hae-Kon;Song, Chung-Gi
    • Proceedings of the KIEE Conference
    • /
    • 1997.11a
    • /
    • pp.235-237
    • /
    • 1997
  • The distance in load parameter space to the closest voltage collapse point (CSNB) provides the worst case power margin and the left eigenvector identifies the most effective direction to steer the system to maximize voltage stability under contingency. This paper proposes a new generation redispatch algorithm, which uses left eigenvector at CSNB to enhance the voltage stability. A Newton method is used to detect CSNB point. Proposed method is applicable to the selection of appropriate reactive power compensation and load shedding point detection. But this paper make a point of voltage stability enhancement only with generation redispatch. The proposed method has been tested for Klos Kerner 11-bus system.

  • PDF

A New Algorithm for Unstable Mode Decision in the On-line Transient Stability Assessment (온라인 과도안정도 평가를 위한 새로운 불안정모드 선정 알고리즘)

  • Chang, Dong-Hwan;Kim, Jung-Woo;Chun, Yeong-Han
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.7
    • /
    • pp.1123-1128
    • /
    • 2008
  • The necessity of online dynamic security assessment is getting apparent under Electricity Market environments, as operation of power system is exposed to more various operating conditions. For on-line dynamic security assessment, fast transient stability analysis tool is required for contingency selection. The TEF(Transient Energy Function) method is a good candidate for this purpose. The clustering of critical generators is crucial for the precise and fast calculation of energy margin. In this paper, we propose a new method for fast decision of mode of instability by using stability indices and energy margin. The method is a new version of our previous paper.[1] Case studies are showing very promising results.

Use of Managerical Decision Categories for Selecting KA/KR Techniques in HRM Problem Domains

  • Byun, Dae-Ho;Suh, Eui-Ho
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.21 no.2
    • /
    • pp.71-93
    • /
    • 1996
  • Selection of appropriate knowledge acquisition and representation techniques is regarded as a major task in the development of expert systems. This depends on the characteristics of problem domains. Expert system builders have often adopted a technique without a formal analysis of application domains. The purpose of this paper is to provide the best knowledge aquisition and representation technique for use in human resource management problem domains. In an attempt to meet this purpose, the conceptual contingency model that suggests the best technique according to managerial decision categories is used as a guidance. In order to determine the priority of managerial decision categories, the Analytic Hierarchy Process and an extended method are proposed.

  • PDF

Contingent Interactivity of New Media Contents: Film Re-cut and Game Modding (뉴미디어 콘텐츠의 우연적 상호작용성: 영화 리컷과 게임 모딩)

  • Kim, Mookyu
    • The Journal of the Korea Contents Association
    • /
    • v.19 no.6
    • /
    • pp.481-490
    • /
    • 2019
  • The purpose of this paper is to recognize and embody the implications of the concept of interactivity. Among the many types of interactivity already proposed, this paper sheds light especially on the so-called contingent interactivity. The contingency means a condition in which a particular performance or selection of a subject is considered neither necessary nor conclusive, and also the potential for various activities of this subject. The contingent interaction comes into being when the involvements of users in dealing with a message or content are experimental or creative. The interaction does not orient toward the completion of content or the immersion to a particular reality. Rather, the results of a user's contingent performance are not the finalized content and have characteristics that lead to the continuous modification. In order to embody this meaning of contingent interactivity, the paper examined the two example, the film re-cut and game modding. In both cases, it is comprehensive that the user of these two new media activities lies in the contingent situation.

Forecasting of Seasonal Inflow to Reservoir Using Multiple Linear Regression (다중선형회귀분석에 의한 계절별 저수지 유입량 예측)

  • Kang, Jaewon
    • Journal of Environmental Science International
    • /
    • v.22 no.8
    • /
    • pp.953-963
    • /
    • 2013
  • Reliable long-term streamflow forecasting is invaluable for water resource planning and management which allocates water supply according to the demand of water users. Forecasting of seasonal inflow to Andong dam is performed and assessed using statistical methods based on hydrometeorological data. Predictors which is used to forecast seasonal inflow to Andong dam are selected from southern oscillation index, sea surface temperature, and 500 hPa geopotential height data in northern hemisphere. Predictors are selected by the following procedure. Primary predictors sets are obtained, and then final predictors are determined from the sets. The primary predictor sets for each season are identified using cross correlation and mutual information. The final predictors are identified using partial cross correlation and partial mutual information. In each season, there are three selected predictors. The values are determined using bootstrapping technique considering a specific significance level for predictor selection. Seasonal inflow forecasting is performed by multiple linear regression analysis using the selected predictors for each season, and the results of forecast using cross validation are assessed. Multiple linear regression analysis is performed using SAS. The results of multiple linear regression analysis are assessed by mean squared error and mean absolute error. And contingency table is established and assessed by Heidke skill score. The assessment reveals that the forecasts by multiple linear regression analysis are better than the reference forecasts.

A Study on the Service Reliability and Power Quality Improvement Using Hybrid Type Capacitor Bank (하이브리드 타입 커패시터 뱅크를 이용한 공급신뢰도 및 전력품질 개선 방안 연구)

  • Lee, Hansang;Yoon, Dong-Hee
    • Journal of IKEEE
    • /
    • v.18 no.3
    • /
    • pp.313-319
    • /
    • 2014
  • The objectives of power system operations are to preserve system stability and reliability as well as to supply proper electric power. For an activation of these objectives, voltage and reactive power should be considered. There are a number of types about reactive power sources, and an insertion of shunt capacitor banks are one of the method to support bus voltage adjacent. This paper includes the design procedure to determine the hybrid type capacitor bank configurations on power system to improve stability and reliability. This procedure includes the capacitor bank capacity calculation, reactor type selection, and reactor capacity calculation. The total capacity calculation of capacitor bank is based on the reactive power margin which is calculated through system studies such as, contingency analysis and Q-V analysis. In the second step, the reactor type and its capacity can be determined through the harmonic analysis. This paper shows that the harmonics are decreased by the proposed hybrid type capacitor bank, especially 5th and 7th harmonics.

Impact of Ensemble Member Size on Confidence-based Selection in Bankruptcy Prediction (부도예측을 위한 확신 기반의 선택 접근법에서 앙상블 멤버 사이즈의 영향에 관한 연구)

  • Kim, Na-Ra;Shin, Kyung-Shik;Ahn, Hyunchul
    • Journal of Intelligence and Information Systems
    • /
    • v.19 no.2
    • /
    • pp.55-71
    • /
    • 2013
  • The prediction model is the main factor affecting the performance of a knowledge-based system for bankruptcy prediction. Earlier studies on prediction modeling have focused on the building of a single best model using statistical and artificial intelligence techniques. However, since the mid-1980s, integration of multiple techniques (hybrid techniques) and, by extension, combinations of the outputs of several models (ensemble techniques) have, according to the experimental results, generally outperformed individual models. An ensemble is a technique that constructs a set of multiple models, combines their outputs, and produces one final prediction. The way in which the outputs of ensemble members are combined is one of the important issues affecting prediction accuracy. A variety of combination schemes have been proposed in order to improve prediction performance in ensembles. Each combination scheme has advantages and limitations, and can be influenced by domain and circumstance. Accordingly, decisions on the most appropriate combination scheme in a given domain and contingency are very difficult. This paper proposes a confidence-based selection approach as part of an ensemble bankruptcy-prediction scheme that can measure unified confidence, even if ensemble members produce different types of continuous-valued outputs. The present experimental results show that when varying the number of models to combine, according to the creation type of ensemble members, the proposed combination method offers the best performance in the ensemble having the largest number of models, even when compared with the methods most often employed in bankruptcy prediction.