• Title/Summary/Keyword: context reasoning

Search Result 245, Processing Time 0.02 seconds

Context Aware System based on Bayesian Network driven Context Reasoning and Ontology Context Modeling

  • Ko, Kwang-Eun;Sim, Kwee-Bo
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.8 no.4
    • /
    • pp.254-259
    • /
    • 2008
  • Uncertainty of result of context awareness always exists in any context-awareness computing. This falling-off in accuracy of context awareness result is mostly caused by the imperfectness and incompleteness of sensed data, because of this reasons, we must improve the accuracy of context awareness. In this article, we propose a novel approach to model the uncertain context by using ontology and context reasoning method based on Bayesian Network. Our context aware processing is divided into two parts; context modeling and context reasoning. The context modeling is based on ontology for facilitating knowledge reuse and sharing. The ontology facilitates the share and reuse of information over similar domains of not only the logical knowledge but also the uncertain knowledge. Also the ontology can be used to structure learning for Bayesian network. The context reasoning is based on Bayesian Networks for probabilistic inference to solve the uncertain reasoning in context-aware processing problem in a flexible and adaptive situation.

Solving the ambiguity of an Intention Reasoning using Context-Awareness Architecture based on Ontology (온톨로지 기반 상황해석구조를 이용한 의도추론의 모호성 해결)

  • Lee, Seung-Chul;Kim, Chi-Su;Lim, Jae-Hyun
    • Journal of Internet Computing and Services
    • /
    • v.8 no.5
    • /
    • pp.99-108
    • /
    • 2007
  • Context-Aware system using ontology is able to infer a context from help by reasoning engine. It can solve the ambiguity of intention reasoning of context-aware system as it is being made a reasoning rule followed reasoning grammar and being helped by reasoning engine, Also, it has a merit that is easy to apply to new environment by excluding reasoning algorithm from the program. In this paper, we are present context-aware system using ontology, We have tested and implemented it at home basis environment to verify of its effectiveness.

  • PDF

User's Context Reasoning using Data Mining Techniques (데이터 마이닝 기법을 이용한 사용자 상황 추론)

  • Lee Jae-Sik;Lee Jin-Cheon
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2006.06a
    • /
    • pp.122-129
    • /
    • 2006
  • The context-awareness has become the one of core technologies and the indispensable function. for application services in ubiquitous computing environment. In this research, we incorporated the capability of context-awareness in a music recommendation system. Our proposed system consists of such components as Intention Module, Mood Module and Recommendation Module. Among these modules, the Intention Module infers whether a user wants to listen to the music or not from the environmental context information. We built the Intention Module using data mining techniques such as decision tree, support vector machine and case-based reasoning. The results showed that the case-based reasoning model outperformed the other models and its accuracy was 84.1%.

  • PDF

Ontology-Based Dynamic Context Management and Spatio-Temporal Reasoning for Intelligent Service Robots (지능형 서비스 로봇을 위한 온톨로지 기반의 동적 상황 관리 및 시-공간 추론)

  • Kim, Jonghoon;Lee, Seokjun;Kim, Dongha;Kim, Incheol
    • Journal of KIISE
    • /
    • v.43 no.12
    • /
    • pp.1365-1375
    • /
    • 2016
  • One of the most important capabilities for autonomous service robots working in living environments is to recognize and understand the correct context in dynamically changing environment. To generate high-level context knowledge for decision-making from multiple sensory data streams, many technical problems such as multi-modal sensory data fusion, uncertainty handling, symbolic knowledge grounding, time dependency, dynamics, and time-constrained spatio-temporal reasoning should be solved. Considering these problems, this paper proposes an effective dynamic context management and spatio-temporal reasoning method for intelligent service robots. In order to guarantee efficient context management and reasoning, our algorithm was designed to generate low-level context knowledge reactively for every input sensory or perception data, while postponing high-level context knowledge generation until it was demanded by the decision-making module. When high-level context knowledge is demanded, it is derived through backward spatio-temporal reasoning. In experiments with Turtlebot using Kinect visual sensor, the dynamic context management and spatio-temporal reasoning system based on the proposed method showed high performance.

A Case-Based Reasoning Approach to Ontology Inference Engine Selection for Robust Context-Aware Services (상황인식 서비스의 안정적 운영을 위한 온톨로지 추론 엔진 선택을 위한 사례기반추론 접근법)

  • Shim, Jae-Moon;Kwon, Oh-Byung
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.33 no.2
    • /
    • pp.27-44
    • /
    • 2008
  • Owl-based ontology is useful to realize the context-aware services which are composed of the distributed and self-configuring modules. Many ontology-based inference engines are developed to infer useful information from ontology. Since these engines show the uniqueness in terms of speed and information richness, it's difficult to ensure stable operation in providing dynamic context-aware services, especially when they should deal with the complex and big-size ontology. To provide a best inference service, the purpose of this paper is to propose a novel methodology of context-aware engine selection in a contextually prompt manner Case-based reasoning is applied to identify the causality between context and inference engined to be selected. Finally, a series of experiments is performed with a novel evaluation methodology to what extent the methodology works better than competitive methods on an actual context-aware service.

A Recommendation System based on Context Reasoning by Data Mining Techniques (데이터 마이닝 기법을 이용한 상황 추론 추천시스템)

  • Lee, Jae-Sik;Lee, Jin-Cheon
    • 한국경영정보학회:학술대회논문집
    • /
    • 2007.11a
    • /
    • pp.591-596
    • /
    • 2007
  • 본 연구에서는 상황 추론의 기능을 추천 시스템에 접목하였다. 연구의 대상 영역은 음악 추천 분야인데, 본 연구에서 제안하는 시스템은 세 개의 모듈, 즉 Intention Module, Mood Module 그리고 Recommendation Module로 구성되어 있다. Intention Module은 사용자가 음악을 청취할 의향이 있는지 없는지를 외부 환경의 상황 데이터를 이용하여 추론한다. Mood Module은 사용자의 상황에 적합한 음악의 장르를 추론한다. 마지막으로 Recommendation Module은 사용자에게 선정된 장르의 음악을 추천한다.

  • PDF

ARCHITECTURAL ANALYSIS OF CONTEXT-AWARE SYSTEMS IN PERVASIVE COMPUTING ENVIRONMENT

  • Udayan J., Divya;Kim, HyungSeok
    • Journal of the HCI Society of Korea
    • /
    • v.8 no.1
    • /
    • pp.11-17
    • /
    • 2013
  • Context aware systems are those systems that are aware about the environment and perform productive functions automatically by reducing human computer interactions(HCI). In this paper, we present common architecture principles of context-aware systems to explain the important aspects of context aware systems. Our study focuses on identifying common concepts in pervasive computing approaches, which allows us to devise common architecture principles that may be shared by many systems. The principles consists of context sensing, context modeling, context reasoning, context processing, communication modelling and resource discovery. Such an architecture style can support high degree of reusability among systems and allows for design flexibility, extensibility and adaptability among components that are independent of each other. We also propose a new architecture based on broker-centric middleware and using ontology reasoning mechanism together with an effective behavior based context agent that would be suitable for the design of context-aware architectures in future systems. We have evaluated the proposed architecture based on the design principles and have done an analyses on the different elements in context aware computing based on the presented system.

  • PDF

Context Information Modeling Method based on Ontology (온톨로지 기반의 컨택스트 정보 모델링 기법)

  • Kim, Jin-Hyung;Hwang, Myung-Gwon;Jung, Han-Min
    • Journal of Digital Contents Society
    • /
    • v.12 no.4
    • /
    • pp.437-447
    • /
    • 2011
  • Ubiquitous Computing is required to define models for broad context information occurrence by surrounding environment and to study how to model a mechanism for selectively collecting useful pieces of context information and providing relevant intelligent services. Further, studies are also required as to process of context information, and its maintenance and reasoning. However, current context-aware research area still lacks modeling technique that reflects the characteristics of ontology effectively for providing relevant intelligent services. It has also limitation about context reasoning and interoperability among context information. Therefore, this paper proposes ontology-based context-aware modeling technique and framework enabling efficient specification of context information for providing intelligent context-aware services that support context management and reasoning.

A Recommender System for Device Sharing Based on Context-Aware and Personalization

  • Park, Jong-Hyun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.4 no.2
    • /
    • pp.174-190
    • /
    • 2010
  • In ubiquitous computing, invisible devices and software are connected to one another to provide convenient services to users [1][2]. Users hope to obtain a personalized service which is composed of customized devices among sharable devices in a ubiquitous smart space (which is called USS in this paper). However, the situations of each user are different and user preferences also are various. Although users request the same service in the same USS, the most suitable devices for composing the service are different for each user. For these user requirements, this paper proposes a device recommender system which infers and recommends customized devices for composing a user required service. The objective of this paper is the development of the systems for recommending devices through context-aware inference in peer-to-peer environments. For this goal, this paper considers the context and user preference. Also I implement a prototype system and test performance on the real ubiquitous mobile object (UMO).

Context-Awareness Healthcare for Disease Reasoning Based on Fuzzy Logic

  • Lee, Byung-Kwan;Jeong, Eun-Hee;Lee, Sang-Sik
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.1
    • /
    • pp.247-256
    • /
    • 2016
  • This paper proposes Context-Awareness Healthcare for Disease Reasoning based on Fuzzy Logic. It consists of a Fuzzy-based Context-Awareness Module (FCAM) and a Fuzzy-based Disease Reasoning Module (FDRM). The FCAM computes a Correlation coefficient and Support between a Condition attribute and a Decision attribute and generates Fuzzy rules by using just the Condition attribute whose Correlation coefficient and Support are high. According to the result of accuracy experiment using a SIPINA mining tool, those generated by Fuzzy Rule based on Correlation coefficient and Support (FRCS) and Improved C4.5 are 0.84 and 0.81 each average. That is, compared to the Improved C4.5, the FRCS reduces the number of generated rules, and improves the accuracy of rules. In addition, the FDRM can not only reason a patient’s disease accurately by using the generated Fuzzy Rules and the patient disease information but also prevent a patient’s disease beforehand.