Journal of the Korean Institute of Intelligent Systems
/
v.21
no.5
/
pp.618-623
/
2011
This paper proposes a novel method to discriminate meaningful tables from decorative one using a composite kernel for handling structural information of tables. In this paper, structural information of a table is extracted with two types of parse trees: context tree and table tree. A context tree contains structural information around a table, while a table tree presents structural information within a table. A composite kernel is proposed to efficiently handle these two types of trees based on a parse tree kernel. The support vector machines with the proposed kernel dised kuish meaningful tables from the decorative ones with rich structural information.
International Journal of Fuzzy Logic and Intelligent Systems
/
v.10
no.1
/
pp.19-24
/
2010
The rise of music resources has led to a parallel rise in the need to manage thousands of songs on user devices. So users have a tendency to build playlist for manage songs. However the manual selection of songs for creating playlist is a troublesome work. This paper proposes an auto playlist generation system considering user context of use and preferences. This system has two separated systems; 1) the mood and emotion classification system and 2) the music recommendation system. Firstly, users need to choose just one seed song for reflecting their context of use. Then system recommends candidate song list before the current song ends in order to fill up user playlist. User also can remove unsatisfied songs from the recommended song list to adapt the user preference model on the system for the next song list. The generated playlists show well defined mood and emotion of music and provide songs that the preference of the current user is reflected.
International Journal of Computer Science & Network Security
/
v.24
no.7
/
pp.195-201
/
2024
With the Covid-19(Corona Virus) spread all around the world, people are using this propaganda and the desperate need of the citizens to know the news about this mysterious virus by spreading fake news. Some Countries arrested people who spread fake news about this, and others made them pay a fine. And since Social Media has become a significant source of news, .there is a profound need to detect these fake news. The main aim of this research is to develop a web-based model using a combination of machine learning algorithms to detect fake news. The proposed model includes an advanced framework to identify tweets with fake news using Context Analysis; We assumed that Natural Language Processing(NLP) wouldn't be enough alone to make context analysis as Tweets are usually short and do not follow even the most straightforward syntactic rules, so we used Tweets Features as several retweets, several likes and tweet-length we also added statistical credibility analysis for Twitter users. The proposed algorithms are tested on four different benchmark datasets. And Finally, to get the best accuracy, we combined two of the best algorithms used SVM ( which is widely accepted as baseline classifier, especially with binary classification problems ) and Naive Base.
Journal of the Institute of Electronics Engineers of Korea CI
/
v.48
no.4
/
pp.51-60
/
2011
Authentication model in the wireless environment has many security vulnerabilities. However, there is no adapting standard method in this field. Therefore, we propose a fuzzy logic based authentication model to enhance the security level in the authentication environment. We use fuzzy logic based classification to construct our model, and also additionally utilize improved AHP and case-based reasoning for an appropriate decision making. We compute the context information by using the improved AHP method, use the proposed model to compute the security level for the input data, and securely apply the proposed model to the wireless environment which has diverse context information. We look forward to better security model including cloud computing by extending the proposed method in the future.
Journal of the Korea Institute of Information Security & Cryptology
/
v.30
no.4
/
pp.719-734
/
2020
This paper proposes a new measurement scheme for estimating the processing level according to risk when performing de-identification in the use of personal information by practitioners in the organization in line with the recently revised Data 3 Act. Our proposed methods considered the surrounding circumstances surrounding the data, not just the data, for risk measurement, and divided the data situation into three categories more systematically so that it can be applied in all areas in a general-purpose environment, the data utilization environment, and the data (self) so that it can be calculated quantitatively based on each context risk according to the presented classification. The proposed method is designed to calculate the risk of existing de-identifiable information in a quantitative manner so that personal information controller in general organizations can use it in practice, not just in the qualitative judgment of experts.
Journal of the Korea Institute of Information and Communication Engineering
/
v.26
no.5
/
pp.755-762
/
2022
This paper propose a clustered algorithm that possible more efficient COVID-19 disease learning prediction within clustering using context-aware attribute information. In typically, clustering of COVID-19 diseases provides to classify interrelationships within disease cluster information in the clustering process. The clustering data will be as a degrade factor if new or newly processing information during treated as contaminated factors in comparative interrelationships information. In this paper, we have shown the solving the problems and developed a clustering algorithm that can extracting disease correlation information in using K-means algorithm. According to their attributes from disease clusters using accumulated information and interrelationships clustering, the proposed algorithm analyzes the disease correlation clustering possible and centering points. The proposed algorithm showed improved adaptability to prediction accuracy of the classification management system in terms of learning as a group of multiple disease attribute information of COVID-19 through the applied simulation results.
International conference on construction engineering and project management
/
2024.07a
/
pp.1315-1315
/
2024
In recent years, the building industry has seen a fundamental transition due to Digitalization Transformation (DX), with the aim of improving efficiency, productivity, sustainability, and cost-effectiveness. In particular, literature has significantly emphasized Smart Buildings (SBs), which are expected to grow in the global marketplace in the coming years. The most noticeable benefits include energy efficiency, increased occupant comfort and productivity, and a reduction in the building's impact on the environment. Most importantly, the shift to SBs has resulted in major changes to how traditional business practices are carried out. The Facility Asset Management (FAM) domain is one key area undergoing considerable changes to meet the needs of managing functional SBs. Despite this shifting landscape, the changes and prospective extensions to the business areas of FAM in the context of SBs remain largely unexplored. Thus, to address this limitation, this paper aims to investigate the potential changes (i.e., either the addition of a new function or the expansion of an existing function) of the FAM domain from the context of SBs. To achieve this objective, • First, based on a generic model of FAM proposed by Jin et al. (2024), a three-level hierarchical classification of FAM business functions for a conventional building is proposed. • Second, the concept of SBs is thoroughly discussed, including its drivers, features, enablers, and improvement areas. • Finally, a new FAM business function for SB is proposed, aligning with the distinct characteristics of SBs. As there are no established functional taxonomies of FAM, the comprehensive breakdown of FAM business functions presented in this study can be used as a standardized functional breakdown of the FAM domain. Moreover, it can also be used to facilitate robust and integrated information management practices throughout the whole lifecycle of SB facilities.
Journal of Korean Society for Geospatial Information Science
/
v.19
no.1
/
pp.105-113
/
2011
Since existing thematic maps have been made with medium- to low-resolution satellite images, they have several shortcomings including low positional accuracy and low precision of presented thematic information. Digital aerial photo image taken recently can express panchromatic and color bands as well as NIR (Near Infrared) bands which can be used in interpreting forest areas. High resolution images are also available, so it would be possible to conduct precision land cover classification. In this context, this paper implemented object-based land cover classification by using digital aerial photos with 0.12m GSD (Ground Sample Distance) resolution and IKONOS satellite images with 1m GSD resolution, both of which were taken on the same area, and also executed qualitative analysis with ortho images and existing land cover maps to check the possibility of object-based land cover classification using digital aerial photos and to present usability of digital aerial photos. Also, the accuracy of such classification was analyzed by generating TTA(Training and Test Area) masks and also analyzed their accuracy through comparison of classified areas using screen digitizing. The result showed that it was possible to make a land cover map with digital aerial photos, which allows more detailed classification compared to satellite images.
Journal of The Korean Association For Science Education
/
v.34
no.2
/
pp.55-62
/
2014
This study is to reclassify the classifications or definitions of scientific literacy in scientific literacy researches since 1960s and grasp the classification trends of scientific literacy definitions. Sixteen articles have been selected among the articles that have been introduced in the two articles. Classification criteria are as follows: 1) "be learned," "competence," or "be able to function in society" as meanings of "literate," 2) "terms" or "description" as the ways of representing scientific literacy, 3) "singular structure," "hierarchical structure," or "parallel structure" as the inner structure of scientific literacy definitions. The results of this study are as follows: First, hierarchical structures in scientific literacy have almost always accompanied "terms" representing scientific literacy and also accepted the hierarchy between "be learned" and "competence," but not the definition of scientific literacy as functioning in society. All parallel structures in scientific literacy have accompanied the definition as functioning in society. And singular structure almost always appears in researches based on the views of scientific literacy in relatively recent times. Second, researches who have used "terms" as ways of representing scientific literacy have increased. Based on the results in this study, the meanings of scientific literacy have been emphasized in view of the ability of playing a role in a social context as well as learning and competence these days. To meet this movement in scientific literacy actively, science education community should get out of traditional teaching and learning scientific concepts and give emphasis on application in various context and social role of science learners.
Building human-aligned artificial intelligence (AI) for social support remains challenging despite the advancement of Large Language Models. We present a novel method, the Chain of Empathy (CoE) prompting, that utilizes insights from psychotherapy to induce LLMs to reason about human emotional states. This method is inspired by various psychotherapy approaches-Cognitive-Behavioral Therapy (CBT), Dialectical Behavior Therapy (DBT), Person-Centered Therapy (PCT), and Reality Therapy (RT)-each leading to different patterns of interpreting clients' mental states. LLMs without CoE reasoning generated predominantly exploratory responses. However, when LLMs used CoE reasoning, we found a more comprehensive range of empathic responses aligned with each psychotherapy model's different reasoning patterns. For empathic expression classification, the CBT-based CoE resulted in the most balanced classification of empathic expression labels and the text generation of empathic responses. However, regarding emotion reasoning, other approaches like DBT and PCT showed higher performance in emotion reaction classification. We further conducted qualitative analysis and alignment scoring of each prompt-generated output. The findings underscore the importance of understanding the emotional context and how it affects human-AI communication. Our research contributes to understanding how psychotherapy models can be incorporated into LLMs, facilitating the development of context-aware, safe, and empathically responsive AI.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.