• 제목/요약/키워드: contents-based recommendation system

검색결과 178건 처리시간 0.032초

소셜 네트워크 서비스 기반의 4세대 지식관리시스템 설계 방안 (Design of Fourth Generation Knowledge Management System based on Social Network Service)

  • 안길승;권민성;강창욱;허선
    • 정보과학회 논문지
    • /
    • 제43권5호
    • /
    • pp.579-589
    • /
    • 2016
  • 오늘날 여러 기업에서 조직 구성원들의 지식을 활용하여 핵심역량을 강화할 목적으로 효과적으로 기업 내부의 지식을 관리하는 지식관리시스템을 도입하였다. 그러나 기존의 지식관리시스템은 기업 구성원의 적극적인 참여를 독려할만한 요소가 부족하여 고품질의 지식콘텐츠를 공유하지 못하고 있다. 이에 본 연구에서는 소셜 네트워크 서비스(Social Network Service, SNS)의 구조를 차용한 집단지성 기반 지식관리 시스템을 설계하여 기능에 따른 화면구조, 사용자의 편의 향상과 융합적인 지식콘텐츠 생산을 위한 추천알고리즘을 제시한다. 본 연구에서 제안하는 소셜 네트워크 서비스 기반의 지식관리시스템은 기존 지식관리시스템보다 구성원의 참여를 독려하고 수준 높은 지식콘텐츠를 생산 및 공유할 수 있을 것으로 기대된다.

U-마켓에서의 사용자 정보보호를 위한 매장 추천방법 (A Store Recommendation Procedure in Ubiquitous Market for User Privacy)

  • 김재경;채경희;구자철
    • Asia pacific journal of information systems
    • /
    • 제18권3호
    • /
    • pp.123-145
    • /
    • 2008
  • Recently, as the information communication technology develops, the discussion regarding the ubiquitous environment is occurring in diverse perspectives. Ubiquitous environment is an environment that could transfer data through networks regardless of the physical space, virtual space, time or location. In order to realize the ubiquitous environment, the Pervasive Sensing technology that enables the recognition of users' data without the border between physical and virtual space is required. In addition, the latest and diversified technologies such as Context-Awareness technology are necessary to construct the context around the user by sharing the data accessed through the Pervasive Sensing technology and linkage technology that is to prevent information loss through the wired, wireless networking and database. Especially, Pervasive Sensing technology is taken as an essential technology that enables user oriented services by recognizing the needs of the users even before the users inquire. There are lots of characteristics of ubiquitous environment through the technologies mentioned above such as ubiquity, abundance of data, mutuality, high information density, individualization and customization. Among them, information density directs the accessible amount and quality of the information and it is stored in bulk with ensured quality through Pervasive Sensing technology. Using this, in the companies, the personalized contents(or information) providing became possible for a target customer. Most of all, there are an increasing number of researches with respect to recommender systems that provide what customers need even when the customers do not explicitly ask something for their needs. Recommender systems are well renowned for its affirmative effect that enlarges the selling opportunities and reduces the searching cost of customers since it finds and provides information according to the customers' traits and preference in advance, in a commerce environment. Recommender systems have proved its usability through several methodologies and experiments conducted upon many different fields from the mid-1990s. Most of the researches related with the recommender systems until now take the products or information of internet or mobile context as its object, but there is not enough research concerned with recommending adequate store to customers in a ubiquitous environment. It is possible to track customers' behaviors in a ubiquitous environment, the same way it is implemented in an online market space even when customers are purchasing in an offline marketplace. Unlike existing internet space, in ubiquitous environment, the interest toward the stores is increasing that provides information according to the traffic line of the customers. In other words, the same product can be purchased in several different stores and the preferred store can be different from the customers by personal preference such as traffic line between stores, location, atmosphere, quality, and price. Krulwich(1997) has developed Lifestyle Finder which recommends a product and a store by using the demographical information and purchasing information generated in the internet commerce. Also, Fano(1998) has created a Shopper's Eye which is an information proving system. The information regarding the closest store from the customers' present location is shown when the customer has sent a to-buy list, Sadeh(2003) developed MyCampus that recommends appropriate information and a store in accordance with the schedule saved in a customers' mobile. Moreover, Keegan and O'Hare(2004) came up with EasiShop that provides the suitable tore information including price, after service, and accessibility after analyzing the to-buy list and the current location of customers. However, Krulwich(1997) does not indicate the characteristics of physical space based on the online commerce context and Keegan and O'Hare(2004) only provides information about store related to a product, while Fano(1998) does not fully consider the relationship between the preference toward the stores and the store itself. The most recent research by Sedah(2003), experimented on campus by suggesting recommender systems that reflect situation and preference information besides the characteristics of the physical space. Yet, there is a potential problem since the researches are based on location and preference information of customers which is connected to the invasion of privacy. The primary beginning point of controversy is an invasion of privacy and individual information in a ubiquitous environment according to researches conducted by Al-Muhtadi(2002), Beresford and Stajano(2003), and Ren(2006). Additionally, individuals want to be left anonymous to protect their own personal information, mentioned in Srivastava(2000). Therefore, in this paper, we suggest a methodology to recommend stores in U-market on the basis of ubiquitous environment not using personal information in order to protect individual information and privacy. The main idea behind our suggested methodology is based on Feature Matrices model (FM model, Shahabi and Banaei-Kashani, 2003) that uses clusters of customers' similar transaction data, which is similar to the Collaborative Filtering. However unlike Collaborative Filtering, this methodology overcomes the problems of personal information and privacy since it is not aware of the customer, exactly who they are, The methodology is compared with single trait model(vector model) such as visitor logs, while looking at the actual improvements of the recommendation when the context information is used. It is not easy to find real U-market data, so we experimented with factual data from a real department store with context information. The recommendation procedure of U-market proposed in this paper is divided into four major phases. First phase is collecting and preprocessing data for analysis of shopping patterns of customers. The traits of shopping patterns are expressed as feature matrices of N dimension. On second phase, the similar shopping patterns are grouped into clusters and the representative pattern of each cluster is derived. The distance between shopping patterns is calculated by Projected Pure Euclidean Distance (Shahabi and Banaei-Kashani, 2003). Third phase finds a representative pattern that is similar to a target customer, and at the same time, the shopping information of the customer is traced and saved dynamically. Fourth, the next store is recommended based on the physical distance between stores of representative patterns and the present location of target customer. In this research, we have evaluated the accuracy of recommendation method based on a factual data derived from a department store. There are technological difficulties of tracking on a real-time basis so we extracted purchasing related information and we added on context information on each transaction. As a result, recommendation based on FM model that applies purchasing and context information is more stable and accurate compared to that of vector model. Additionally, we could find more precise recommendation result as more shopping information is accumulated. Realistically, because of the limitation of ubiquitous environment realization, we were not able to reflect on all different kinds of context but more explicit analysis is expected to be attainable in the future after practical system is embodied.

비만 관련 SNP genotype-phenotype 정보기반의 맞춤 식단옴 추천 (Personalized Dietary SikdanOme Recommendation based on Obesity Related SNP Genotype and Phenotype)

  • 신가희;이상민;강병철;장대자;권대영;김민정;김리랑;김진희;양혜정
    • 한국콘텐츠학회논문지
    • /
    • 제16권10호
    • /
    • pp.435-442
    • /
    • 2016
  • 전 세계적으로 비만인구의 증가로 인해 경제적 부담이 확대되고 있으며, 그 원인으로 육체적 활동의 감소 및 식이관리의 실패가 손꼽히고 있다. 영양성분 및 칼로리를 기반으로 한 맞춤 식단정보 제공 시스템과는 차별적으로 본 연구는 개인 맞춤형 기능성 식품을 추천하기 위해 비만 관련 SNP (single nucleotide polymorphism) 정보를 활용하였다. 본 연구를 위해 GWAS (Genome-wide association study) 분석을 수행하여 한국인 특이적인 비만 관련 SNP을 발굴하고, 이를 활용하여 유전적 정보를 입력하여 SNP genoype-phenoype 정보에 따른 맞춤 식단옴을 추천하였다. 또한 USDA (The United States Department of Agriculture) 식품 정보를 활용할 수 있도록 식품 통합 Database를 구축하여 식단 추천에 적용하였다. 그 결과, 표현형 정보 BMI (Body Mass Index)는 정상 수치를 가지고 있으나, 비만 관련 SNP 정보를 가지고 있는 샘플은 유전적 비만 위험도를 나타내어 식이관리가 필요하다는 정보를 확인하였으며, 관련 식품 정보를 제공하였다. 따라서 표현형에 따른 비만에 관한 정보와 유전형 정보가 일치하는 것은 아니며, 이는 표현형적 정보만을 이용한 비만 관리 식이 추천에는 한계가 있음을 의미하며 이러한 결과는 비만외 다른 성인병들에도 적용이 필요하며 이를 위해서는 표현형-유전적 통합정보를 기반 한 맞춤식이 추천이 필요함을 나타내었다.

TV-Anytime을 이용한 멀티에이전트 기반의 개인화된 TV 프로그램 서비스 시스템 개발 (Development of Multi-agent based Personalized-TV Program Service System using TV-Anytime)

  • 하경휘;김건희;최진우;하성도
    • 한국HCI학회:학술대회논문집
    • /
    • 한국HCI학회 2006년도 학술대회 1부
    • /
    • pp.333-338
    • /
    • 2006
  • 최근 사용자에 대한 많은 정보를 얻는 것이 가능해지면서, 데이터마이닝 기법이나 Contents 추천 기법을 이용한 맞춤형 서비스가 가능하게 되었다. 특히, 대부분의 사람들에게 TV 프로그램 시청은 여가생활시간에서 가장 높은 비중을 차지 하고 있다. 따라서, 보다 지능적인 TV 프로그램 서비스를 제공하는 기술에 대하여 관심이 고조되고 있다. 본 논문에서는 TV-Anytime을 이용하여 개인화된 Electronic Program Guide (EPG)를 생성하고, 개인화된 EPG 정보를 활용하여 시청자에게 맞춤형 TV 프로그램 서비스를 제공하는 시스템에 대한 연구 결과를 제시한다. 또한 시청자의 시청패턴과 TV 프로그램 선호도를 바탕으로 시청자가 원하는 프로그램을 추천하는 TV Program Recommender Agent와 방송 및 TV 프로그램에 대한 대화를 담당하는 TV Program Helper Agent, 시스템 조정 및 메시지 전달을 담당하는 Coordinator Agent로 이루어진 멀티에이전트 기반 시스템 구조를 제시한다.

  • PDF

재난 관련 위치 신뢰도 향상을 위한 소셜 미디어 활용 (Leveraging Social Media for Enriching Disaster related Location Trustiness)

  • 뉘엔반퀴엣;뉘엔양쯔엉;뉘엔신응억;김경백
    • 디지털콘텐츠학회 논문지
    • /
    • 제18권3호
    • /
    • pp.567-575
    • /
    • 2017
  • 위치기반 서비스는 재난 경보 시스템 및 추천시스템 등의 다양한 응용에서 중요한 역할을 한다. 이들 응용들은 위치정보(위도, 경도 등) 뿐만 아니라 위치에 대한 사건(지진, 태풍 등)의 영향력을 필요로 한다. 최근 이러한 위치에 대한 사건의 영향력을 제공하기 위해, 다양한 형태의 정보(지진 정보와 센서 정보)를 이용한 위치 신뢰도 계산 방법이 연구 되었다. 이전의 연구에서는 사건의 영향을 선형으로 감소시키는 형태로 위치 신뢰도를 계산하였다. 이 논문에서는 소셜 미디어를 추가적으로 활용하여 사건의 위치에 대한 영향력, 즉 위치 신뢰도를 향상 시키는 만드는 방법을 제안하였다. 우선 지진정보와 소셜 미디어 데이터를 수집하는 시스템을 설계하였다. 두번째로, 지진정보에 기반한 위치 신뢰도 계산 방법을 소개하였다. 최종적으로 소셜 미디어에 기반하여 공간적으로 분산되는 형태로 신뢰도를 증강시키는 방법을 통해 위치 신뢰도 정보를 더욱 풍부하게 제공하는 방법을 제안하였다.

군사용 지능형 영상 판독 시스템에서의 빔서치를 활용한 문장 추천 (Sentence Recommendation Using Beam Search in a Military Intelligent Image Analysis System)

  • 나형선;전태현;강형석;안진현;임동혁
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제10권11호
    • /
    • pp.521-528
    • /
    • 2021
  • 군사 분야에서 사용 중인 기존 영상 판독 시스템은 판독관들이 직접 영상을 분석 및 식별하여 관련 내용을 보고서에 작성하고 전파하는 방식으로 진행되는데 이 과정에서 반복 작업이 빈번하여 업무 과부하가 발생한다. 본 논문에서는 이러한 문제를 해결하고자, 기존의 문장 단위로 동작하는 Seq2Seq 모델을 단어 단위로 동작할 수 있는 알고리즘을 제안하고, Attention 기법을 적용해 정확도를 향상시키고자 한다. 또한 Beam 탐색 기법을 응용하여 특정 지역의 과거 식별내용을 바탕으로 현재 식별 문장을 다양하게 추천하고자 한다. 실험을 통해 Beam 탐색 기법이 기존 Greedy 탐색 기법보다 효과적으로 문장을 추천하는 것을 확인하였고, Beam의 크기가 클 때 추천의 정확도가 높아지는 것을 확인하였다.

영상 스토리 분석과 시청 패턴 분석 기반의 추천 시스템 구현 (Implementation of User Recommendation System based on Video Contents Story Analysis and Viewing Pattern Analysis)

  • 이현섭;김민영;이지훈;김진덕
    • 한국정보통신학회논문지
    • /
    • 제24권12호
    • /
    • pp.1567-1573
    • /
    • 2020
  • 인터넷 기술의 발전으로 1인 미디어 시대로 도래했다. 한 개인이 스스로 콘텐츠를 제작하여 관련 온라인 서비스로 업로드 하고, 많은 사용자가 온라인 서비스의 콘텐츠를 인터넷을 이용할 수 있는 장치(PC, 스마트폰, 스마트TV 등)를 이용해 시청하고 있다. 현재 대부분 사용자가 기존 온라인 서비스에서 제공하는 검색기능을 통해 원하는 콘텐츠를 찾아서 시청하고 있다. 이러한 기능은 콘텐츠를 업로드 한 사용자가 입력한 정보를 바탕으로 제공된다. 이러한 제한된 단어 데이터를 바탕으로 콘텐츠를 검색해야 하는 환경에서 잘못된 정보가 있는 경우 검색 결과의 유사도 효율 저하와 잘못된 결과를 사용자에게 제시한다. 이를 해결하기 위해 본 논문에서는 온라인 서비스에서 콘텐츠 정보를 시스템이 능동적으로 영상을 분석하고, 영상이 보유한 특성을 추출해 반영하는 방법을 제시한다. 한 동영상의 음성데이터를 근거한 스토리 내용을 근거로 형태소를 추출해 빅데이터 기술로 분석하기 위한 연구 내용을 다룬다.

소셜 네트워크 기반의 콘텐츠 추천 시스템의 개발 (Development of contents recommendation system based on social network)

  • 배운봉;왕청;권경락;손종수;정인정
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2010년도 추계학술발표대회
    • /
    • pp.523-526
    • /
    • 2010
  • 오늘날의 인터넷은 웹 2.0 의 출현으로 인하여 콘텐츠의 생산주체가 서비스 제공자에서 서비스 수요자인 사용자들로 변화되고 있다. 이에 따라 사용자들의 경험은 콘텐츠의 품질에 큰 영향을 미치고 있으며 소셜 네트워크에서 취득한 콘텐츠는 검색으로 취득한 콘텐츠보다 신뢰를 받고 있다. 본 논문에서는 소셜 네트워크를 기반으로 사용자들에게 양질의 콘텐츠를 추천하기 위한 방법과 그 개발을 보인다. 소셜 네트워크는 XML 기반의 사용자 프로파일 기술 언어인 FOAF 를 이용하여 수집하며 이를 통해 사용자와 사용자 사이의 관계를 수집한다. 그리고 웹 콘텐츠 출판언어인 RSS를 이용하여 각 사용자들이 블로그 등을 통해 배포한 콘텐츠를 수집한다. 본 논문에서 보이는 시스템은 FOAF 와 RSS 를 기초로 입력된 키워드에 대해 사용자와 콘텐츠의 관계를 분석하고 이를 통해 콘텐츠를 추천하는 기능을 가진다. 본 논문에서 보이는 시스템은 전통적인 콘텐츠 추천 시스템과 달리 사용자가 속한 소셜 네트워크에서 콘텐츠 생산자가 대한 중요도가 반영되므로 보다 신뢰성 있는 결과를 얻을 수 있다.

메타 가중치 학습을 활용한 내용 기반의 맞춤형 영화 추천시스템 설계 및 구현 (Design and Implementation of Contents-based Customized movie recommendation system using meta weight learning)

  • 안현우;유해운;김대열
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송∙미디어공학회 2020년도 하계학술대회
    • /
    • pp.587-590
    • /
    • 2020
  • 최근, 디지털 콘텐츠 산업이 폭발적으로 성장됨에 따라 고객 유치를 위한 개인화 추천 기술들이 많은 주목을 받고 있다. 개인화 추천 방식들을 큰 갈래로 나누어 본다면 협업 필터링 기술과 내용 기반 기술로 나눌 수 있다. 협업 필터링의 경우 개인화 추천에는 적합하지만 사용자 평가 데이터의 양이 방대해야 하며 초기에 평가자가 없는 콘텐츠에 대해 추천할 수 없는 초기 평가자 문제가 존재한다. 따라서 매일 방대한 양의 콘텐츠가 편입되는 분야에서 사용하기에 큰 결점이 될 수 있다. 본 논문에서는 영화들의 정보가 담긴 데이터 셋과 사용자 평가 데이터, 그리고 사용자의 선호 기준을 의미하는 메타 가중치를 활용한 내용 기반의 맞춤형 영화 추천 시스템을 제안한다. 논문에서는 먼저, 영화를 고를 때 일반적으로 중요시 보는 속성들을 활용하여 영화의 특징 벡터를 구성하고, 이를 사용자 평가와 결합하여 개인의 선호에 대한 특징 벡터를 구성하는 방법을 제안하며, 구성된 데이터와 코사인 유사도, 메타 가중치를 활용하여 사용자 선호와 유사한 영화들을 도출하는 방법을 제안한다. 또한, 평가데이터를 활용하여 구현된 추천시스템의 검증 프로세스를 구성하고, 검증 프로세스를 활용한 손실 함수를 설계하여 적합한 메타 가중치를 학습하는 방법을 제시한다. 본 논문에서 제안하는 시스템은 다수의 속성을 조합하여 활용하므로 추천 결과가 과도하게 특수화 되지 않을 수 있으며, 메타 가중치라는 요소를 통해 더욱 개인화 된 추천을 제공할 수 있다.

  • PDF

사용자-상품 행렬의 최적화와 협력적 사용자 프로파일을 이용한 그룹의 대표 선호도 추출 (Extracting Typical Group Preferences through User-Item Optimization and User Profiles in Collaborative Filtering System)

  • 고수정
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제32권7호
    • /
    • pp.581-591
    • /
    • 2005
  • 협력적 여과 시스템은 희박성과 단지 두 고객만의 선호도에 따른 상관 관계로 추천을 제공한다는 문제점과 군집내의 가장 유사한 두 사용자만의 상관 관계에 의하여 추천을 한다는 단점이 있다. 또한, 상품의 내용을 기반으로 하지 않고 선호도만을 기반으로 하므로 추천의 정확도가 사용자에 의해 평가한 자료에만 의존한다는 문제점도 있다. 이와 같이 평가된 자료를 추천에 이용할 경우, 모든 사용자가 모든 상품에 대해 성의 있게 평가할 수는 없으므로 추천의 정확도가 낮아지는 결과를 가져온다. 따라서 본 논문에서는 엔트로피을 사용하여 사용자가 상품에 대하여 평가한 자료를 기반으로 검증되지 않은 사용자를 제외시키고, 다음으로 사용자 프로파일을 생성한 후 사용자를 군집시키며, 마지막으로 그룹의 대표 선호도를 추출하는 방법을 제안한다. 기존의 사용자 군집을 이용한 방법은 군집내의 사용자만을 대상으로 유사한 사용자를 찾으므로 희박성은 해결할 수 있으나 그 외의 단점을 해결하지 못하였다. 제안한 방법에서는 상품에 대해 평가한 선호도 뿐만 아니라 상품에 대한 정보를 반영하기 위하여 연관 단어 마이닝의 방법에 의해 협력적 사용자의 프로파일을 생성하고, 이를 기반으로 벡터 공간 모델과 K-means 알고리즘에 의해 사용자를 군집시킨다. 군집된 사용자를 대상으로 상품의 선호도와 사용자의 엔트로피를 병합함으로써 최종적으로 그룹의 대표 선호도를 추출한다. 대표 선호도를 이용한 추천 시스템은 한 사용자의 부정확한 선호도를 기반으로 추천을 하는 경우에 나타나는 추천의 부정확도 문제를 해결하며, 군집내의 가장 유사한 두 사용자만의 상관 관계에 의하여 추천을 하는 단점을 보완하고, 또한 그룹 내에 가장 유사한 사용자를 찾는 데 소요되는 시간을 절약할 수 있다는 장점을 갖는다.