• 제목/요약/키워드: content-based information retrieval

검색결과 607건 처리시간 0.023초

색상특징과 웨이블렛 기반의 질감특징을 이용한 영상 검색 (Content-based Image Retrieval using the Color and Wavelet-based Texture Feature)

  • 박종현;박순영;조완현;오일석
    • 한국정보과학회논문지:데이타베이스
    • /
    • 제30권2호
    • /
    • pp.125-133
    • /
    • 2003
  • 본 논문에서는 색상과 웨이블렛 기반의 질감 특징들을 사용한 효율적인 내용기반 영상검색 방법을 제안하였다. 색상특징은 전체 영상으로부터 추출된 soft-히스토그램이 사용되며 질감 특징으로는 웨이블렛 변환의 공간 주파수 분석을 통하여 얻어진 고대역 부밴드로부터 추출된 불변 모우멘트가 이용된다. CTBTR이라 불리는 검색시스템은 질의 영상에 대한 효율적인 영상 검색을 위하여 두 단계의 유사성 정합을 수행하는데 첫 번째 정합 단계에서는 간단한 색상 히스토그램을 사용하여 질의 영상과 유사하지 않은 영상을 제거하여서 검색대상의 수를 줄이며, 두 번째 정합 단계에서는 첫 번째 단계에서 선별된 후보영상에 웨이블렛 기반의 질감특징을 적용하여 질의 영상과 유사한 영상을 검색한다. 실험결과 제안된 알고리즘이 기존의 방법보다 검색에 있어서 효율적인 계산처리와 정확한 검색을 수행하여 향상된 결과를 보여 주었다.

확장된 개념 기반 이미지 검색 시스템 (An Extended Concept-based Image Retrieval System : E-COIRS)

  • 김용일;양재동;양형정
    • 한국정보과학회논문지:컴퓨팅의 실제 및 레터
    • /
    • 제8권3호
    • /
    • pp.303-317
    • /
    • 2002
  • In this paper, we design and implement E-COIRS enabling users to query with concepts and image features used for further refining the concepts. For example, E-COIRS supports the query "retrieve images containing black home appliance to north of reception set. "The query includes two types of concepts: IS-A and composite. "home appliance"is an IS-A concept, and "reception set" is a composite concept. For evaluating such a query. E-COIRS includes three important components: a visual image indexer, thesauri and a query processor. Each pair of objects in an mage captured by the visual image indexer is converted into a triple. The triple consists of the two object identifiers (oids) and their spatial relationship. All the features of an object is referenced by its old. A composite concept is detected by the triple thesaurus and IS-A concept is recolonized by the fuzzy term thesaurus. The query processor obtains an image set by matching each triple in a user with an inverted file and CS-Tree. To support efficient storage use and fast retrieval on high-dimensional feature vectors, E-COIRS uses Cell-based Signature tree(CS-Tree). E-COIRS is a more advanced content-based image retrieval system than other systems which support only concepts or image features.

내용 기반 음악 정보 검색에서 주제 선율의 변화 패턴을 이용한 색인 및 검색 기법 (Indexing and Retrieval Mechanism using Variation Patterns of Theme Melodies in Content-based Music Information Retrievals)

  • 구경이;신창환;김유성
    • 한국정보과학회논문지:데이타베이스
    • /
    • 제30권5호
    • /
    • pp.507-520
    • /
    • 2003
  • 본 연구에서는 내용 기반 음악 정보 검색 시스템의 검색 속도를 증진하기 위해 음악의 대표 선율인 주제 선율을 추출하여 주제 선율 색인을 구성하고 이를 이용한 효율적인 내용 기반 음악 정보 검색 기법을 제안하였다. 추출된 주제 선율을 다차원 공간 색인 기법인 M-tree를 이용하여 주제 선율 색인으로 구성하기 위해 주제 선율의 평균 음 높이 변화량과 평균 음 길이 변화량을 이용하였으며 검색의 정확도를 증진하기 위해 음 높이 변화 패턴을 요약한 높이 시그니처와 음 길이 변화 패턴을 요약한 길이 시그니처를 이용하였다. 또한 제안된 내용 기반 음악 정보 검색 기법에서는 사용자의 질의 선율로부터 질의 선율의 패턴 정보를 구성하고 M-tree의 k-근접 검색 및 범위 검색 기법을 이용하여 사용자의 질의 선율과 유사한 주제 선율을 포함하고 있는 음악 정보를 검색한다. 검색된 결과로부터 순위 부여한 후 사용자 피드백을 하여 사용자의 만족도를 증진하기 위한 특성을 포함하도록 하였다. 또한, 본 논문에서 제안된 주제 선율 색인 기법 및 내용 기반 검색 기법을 포함한 내용 기반 음악 정보 검색 시스템의 프로토타입을 구현하여 제안된 기법의 실효성을 입증하였다.

다중 질의를 위한 적응적 영상 내용 기반 검색 기법 (Adaptive Image Content-Based Retrieval Techniques for Multiple Queries)

  • 홍종선;강대성
    • 대한전자공학회논문지SP
    • /
    • 제42권3호
    • /
    • pp.73-80
    • /
    • 2005
  • 본 최근 영상 및 멀티미디어의 시각적인 내용을 기반으로 하는 검색 방법에 관한 많은 연구들이 진행되고 있다. 내용 기반 영상 검색(content-based image retrieval)에 관한 대부분의 기존의 질의 방법은 입력 영상에 의한 질의 또는 컬러(color), 형태(shape), 특징(texture) 등과 같은 low-level 특징을 사용한다. 그러나 이러한 방법들은 비교적 사용하기 불편하고 방법이 편중되어 있어서 일반 사용자들의 다양한 질의 요구에 적합하지 못하다. 본 논문에서 제안하는 것은 내용 기반 영상 검색 시스템 하의 컬러 객체의 자동 추출과 다중 질의를 위한 레이블링 알고리즘이다. 이것은 먼저 single colorizing 알고리즘을 사용하여 영상의 영역을 단순화 시키고 제안하는 Color and Spatial based Binary tree map (CSB tree map)을 이용하여 컬러 객체를 추출한다. 그리고 제안하는 레이블링 알고리즘을 이용하여 데이터베이스의 객체들을 색인한다. 이것은 컬러와 공간 정보를 고속으로 레이블링 하고 객체의 컬러 속성과 크기 및 위치 정보를 이용하여 객체의 컬러 기반과 공간적 기반의 조합을 바탕으로 하는 사용자의 다양한 질의에 부합할 수 있는 적응성 있는 시스템을 구현한다. 본 논문에서는 "Washington" 데이터베이스를 이용한 비교 실험을 통해서 제안하는 시스템의 검색 결과의 우수함을 알 수 있었다.

The Kernel Trick for Content-Based Media Retrieval in Online Social Networks

  • Cha, Guang-Ho
    • Journal of Information Processing Systems
    • /
    • 제17권5호
    • /
    • pp.1020-1033
    • /
    • 2021
  • Nowadays, online or mobile social network services (SNS) are very popular and widely spread in our society and daily lives to instantly share, disseminate, and search information. In particular, SNS such as YouTube, Flickr, Facebook, and Amazon allow users to upload billions of images or videos and also provide a number of multimedia information to users. Information retrieval in multimedia-rich SNS is very useful but challenging task. Content-based media retrieval (CBMR) is the process of obtaining the relevant image or video objects for a given query from a collection of information sources. However, CBMR suffers from the dimensionality curse due to inherent high dimensionality features of media data. This paper investigates the effectiveness of the kernel trick in CBMR, specifically, the kernel principal component analysis (KPCA) for dimensionality reduction. KPCA is a nonlinear extension of linear principal component analysis (LPCA) to discovering nonlinear embeddings using the kernel trick. The fundamental idea of KPCA is mapping the input data into a highdimensional feature space through a nonlinear kernel function and then computing the principal components on that mapped space. This paper investigates the potential of KPCA in CBMR for feature extraction or dimensionality reduction. Using the Gaussian kernel in our experiments, we compute the principal components of an image dataset in the transformed space and then we use them as new feature dimensions for the image dataset. Moreover, KPCA can be applied to other many domains including CBMR, where LPCA has been used to extract features and where the nonlinear extension would be effective. Our results from extensive experiments demonstrate that the potential of KPCA is very encouraging compared with LPCA in CBMR.

Hue를 이용한 내용기반 검색 (Content-based image retrieval using color)

  • 김동우;장언동;김영길;송영준
    • 한국콘텐츠학회:학술대회논문집
    • /
    • 한국콘텐츠학회 2005년도 춘계 종합학술대회 논문집
    • /
    • pp.480-483
    • /
    • 2005
  • 본 논문은 컬러 히스토그램 방법들의 단점을 극복하고자 영역기반 컬러 히스토그램 영상 검색 방법을 제안한다. 기존의 컬러 히스토그램 검색 방법은 양자화 오류 등의 이유로 정확성이 떨어지는 단점이 있다 이를 해결하기 위해 색상 정보를 HSV로 변환하여 순수 색상 정보인 hue 성분만을 양자화하여 히스토그램을 구해 명암, 이동, 회전등에 강인한 검색 특징으로 사용한다. 컬러 영상을 사용해 실험한 결과 기존의 방법들 보다 좋은 정확성을 보였다.

  • PDF

Content Based Image Retrieval Based on A Novel Image Block Technique Combining Color and Edge Features

  • Kwon, Goo-Rak;Haoming, Zou;Park, Sei-Seung
    • Journal of information and communication convergence engineering
    • /
    • 제8권2호
    • /
    • pp.185-190
    • /
    • 2010
  • In this paper we propose the CBIR algorithm which is based on a novel image block method that combined both color and edge feature. The main drawback of global histogram representation is dependent of the color without spatial or shape information, a new image block method that divided the image to 8 related blocks which contained more information of the image is utilized to extract image feature. Based on these 8 blocks, histogram equalization and edge detection techniques are also used for image retrieval. The experimental results show that the proposed image block method has better ability of characterizing the image contents than traditional block method and can perform the retrieval system efficiently.

색상과 움직임 정보를 이용한 내용기반 동영상 검색 시스템 (Content-Based Video Retrieval System Using Color and Motion Features)

  • 김소희;김형준;정연구;김회율
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2001년도 하계종합학술대회 논문집(3)
    • /
    • pp.133-136
    • /
    • 2001
  • Numerous challenges have been made to retrieve video using the contents. Recently MPEG-7 had set up a set of visual descriptors for such purpose of searching and retrieving multimedia data. Among them, color and motion descriptors are employed to develop a content-based video retrieval system to search for videos that have similar characteristics in terms of color and motion features of the video sequence. In this paper, the performance of the proposed system is analyzed and evaluated. Experimental results indicate that the processing time required for a retrieval using MPEG-7 descriptors is relatively short at the expense of the retrieval accuracy.

  • PDF

구조 및 의미 검색을 지원하는 비디오 데이타의 모델링 (Video Data Modeling for Supporting Structural and Semantic Retrieval)

  • 복경수;유재수;조기형
    • 한국정보과학회논문지:데이타베이스
    • /
    • 제30권3호
    • /
    • pp.237-251
    • /
    • 2003
  • 이 논문에서는 비디오 데이타의 논리적 구조와 의미적 내용을 효과적으로 검색하기 위한 비디오 검색 시스템을 제안한다. 제안하는 검색 시스템은 비정형화된 비디오 데이타를 원시 데이타 계층, 내용 계층 그리고 키프레임 계층의 세 계층으로 구성하는 계층화된 모델링을 사용한다. 계층화된 모델링에 존재하는 내용 계층은 비디오 데이타에 대한 논리적인 계층 구조와 의미적 내용을 표현한다. 제안하는 검색 시스템은 모델링에 따라 텍스트 기반의 검색은 물론 시각적인 특징 기반의 유사도 검색을 지원한다. 또한 시공간 관계에 기반한 의미적 내용 검색과 유사도 검색을 지원한다.

질감 기술자를 이용한 영상 검색 기법에 관한 연구 (A Study on Image Retrieval Method Using Texture Descriptor)

  • 조재훈;정현진;김영섭
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2008년도 하계종합학술대회
    • /
    • pp.745-746
    • /
    • 2008
  • In the last few years rapid improvements in hardware technology have made it possible to process, store and retrieve huge amounts of data ina multimedia format. As a result, Content-Based Image Retrieval(CBIR) has been receiving widespred interest during the last decade. This paper propose the content-based retrieval system as a method for performing image retrieval throught the effective feature analysis of the object of significant meaning by using texture descriptor.

  • PDF