• Title/Summary/Keyword: content supplementary materials

Search Result 51, Processing Time 0.027 seconds

Effects of Content Reviews using Mathematical Games on Students' Mathematical Disposition (수학 게임을 활용한 복습 활동이 학생의 수학적 성향에 미치는 영향)

  • Jang, Myeong Seok;Noh, Jihwa
    • East Asian mathematical journal
    • /
    • v.38 no.4
    • /
    • pp.517-532
    • /
    • 2022
  • This study looked at how content reviews with mathematical games in class would influence the mathematical disposition of middle school students. In doing so, three games adapted from prior research were used as a supplementary instruction after school hours over three months. The mathematical topics of the games involved concepts of probability and trigonometry at the middle school level. The results of the pre- and post-survey on mathematical disposition indicate that incorporating mathematical games appeared to have some positive impacts on whether students might be more eager to learn mathematics and actually put more effort in learning materials.

Influence of fly ash and GGBFS on the pH value of cement mortar in different curing conditions

  • Shafigh, Payam;Yousuf, Sumra;Ibrahim, Zainah;Alsubari, Belal;Asadi, Iman
    • Advances in concrete construction
    • /
    • v.11 no.5
    • /
    • pp.419-428
    • /
    • 2021
  • The pH of cement-based materials (CBMs) is an important factor for their durability, sustainability, and long service life. Currently, the use of supplementary cementitious materials (SCMs) is becoming mandatory due to economic, environmental, and sustainable issues. There is a decreasing trend in pH of CBMs due to incorporation of SCMs. The determination of numerical values of pH is very important for various low and high volume SCMs blended cement mortars for the better understanding of different defects and durability issues during their service life. In addition, the effect of cement hydration and pozzolanic reaction of SCMs on the pH should be determined at initial and later ages. In this study, the effect of low and high-volume fly ash (FA) and ground granulated ballast furnace slag (GGBFS) cement mortars in different curing conditions on their pH values has been determined. Thermal gravimetric analysis (TGA) was carried out to support the findings from pH measurements. In addition, thermal conductivity (k-value) and strength activity indices of these cement mortars were discussed. The results showed that pH values of all blended cement mortars were less than ordinary Portland cement (OPC) mortar in all curing conditions used. There was a decreasing tendency in pH of all mortars with passage of time. In addition, the pH of cement mortars was not only dependent on the quantity of Ca(OH)2. The effect of adding SCMs on the pH value of cement mortar should be monitored and measured for both short and long terms.

Neuro-fuzzy model of concrete exposed to various regimes combined with De-icing salts

  • Ghazy, Ahmed;Bassuoni, Mohamed. T.
    • Computers and Concrete
    • /
    • v.21 no.6
    • /
    • pp.649-659
    • /
    • 2018
  • Adaptive neuro-fuzzy inference systems (ANFIS) can be efficient in modelling non-linear, complex and ambiguous behavior of cement-based materials undergoing combined damage factors of different forms (physical and chemical). The current work investigates the use of ANFIS to model the behavior (time of failure (TF)) of a wide range of concrete mixtures made with different types of cement (ordinary and portland limestone cement (PLC)) without or with supplementary cementitious materials (SCMs: fly ash and nanosilica) under various exposure regimes with the most widely used chloride-based de-icing salts (individual and combined). The results show that predictions of the ANFIS model were rational and accurate, with marginal errors not exceeding 3%. In addition, sensitivity analyses of physical penetrability (magnitude of intruding chloride) of concrete, amount of aluminate and interground limestone in cement and content of portlandite in the binder showed that the predictive trends of the model had good agreement with experimental results. Thus, this model may be reliably used to project the deterioration of customized concrete mixtures exposed to such aggressive conditions.

Effect of Limestone Fineness on Physical Properties and Environmental Impact of Cement (석회석의 분말도가 시멘트의 물리적 특성 및 환경에 미치는 영향)

  • In-Gyu Kang;Jin-Man Kim;Sang-Chul Shin;Geon-Woo Kim;Tae-Yun An
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.12 no.1
    • /
    • pp.82-93
    • /
    • 2024
  • Since the cement industry generates more than 60 % of CO2 during the clinker production process, supplementary cementitious materials are used worldwide to reduce CO2 efficiently. Mainly used supplementary cementitious materials such as blast furnace slag and fly ash, which are used in various industries including the cement industry, concrete admixtures, and ground solidification materials. However, since their availability is expected to decrease in the future according to the carbon neutrality strategy of each industry, new supplementary cementitious materials should be used to achieve the cement industry's goal for increasing the additive content of Portland cement. Limestone is a material that already has a large amount in the cement industry and has the advantage of high grinding efficiency, so overseas developed countries established Portland limestone cement standards and succeeded in commercialization. This study was an experimental study conducted to evaluate the possibility of utilizing domestic PLC, the effect of fineness and replacement ratio on the physical properties of cement was investigated, and the environmental impact of cement was evaluated by analyzing CO2 emissions.

An Investigation on the Mathematical Instruction Utilizing Performance Tasks according to the Backward Design (수학 교과에서의 수행과제를 활용한 수업 방안 탐색 -백워드 이론을 기반으로-)

  • Hwang, Hye Jeang;Park, Hyun Ju
    • The Mathematical Education
    • /
    • v.55 no.1
    • /
    • pp.107-127
    • /
    • 2016
  • The purpose of this study was to explore the possibility of mathematical instruction through performance task activities based on the The Backward Design, which was suggested at first by Wiggins & McTighe in 1998. The Design deals with a performance assessment task involving the whole objective and its entire content of a lesson. Based on the Backward Design, this study established the mathematical instructional materials, which deal with the concept of 'the sector' taught in middle school, with one large performance task including three small tasks. It is important that in the lesson students be guided to achieve the several learning goals by themselves through reasoning activities. For this purpose, a formal interview was carried out by the subject of three middle school mathematics teachers. As a result, in order to implement the instruction utilizing the performance tasks more efficiently in future, it is required that a large performance task should be selected or developed including the content or problem contexts to be relevant with the real-life challenging situations. In addition, to make students enhance reasoning skills, it is strongly requested that the tasks including the utilization of supplementary materials such as technological devices or manipulatives be dealt with in a lesson.

Study of strength and microstructure of a new sustainable concrete incorporating pozzolanic materials

  • Grzegorz Ludwik Golewski
    • Structural Engineering and Mechanics
    • /
    • v.86 no.4
    • /
    • pp.431-441
    • /
    • 2023
  • The aim of this paper is to present a new sustainable ternary and quaternary binder by partially replacing ordinary Portland cement (OPC) with different percentages of supplementary cementitious materials. The motivation is to reduce our dependency on OPC to reduce CO2 emission and carbon foot print. As the main substitute for the OPC, siliceous fly ash was used. Moreover, silica fume and nanosilica were also used. During examinations the main mechanical parameters of concrete composites, i.e., compressive strength (fcm) and splitting tensile strength (fctm) were assed. The microstructure of these materials was also analysed. It was found that the concrete incorporating pozzolanic materials is characterized by a well-developed structure and has high values of mechanical parameters. The quaternary concrete containing: 80% OPC, 5% FA, 10% SF, and 5% nS have shown the best results in terms of good strength parameters as well as the most favourable microstructure, whereas the worst mechanical parameters with microstructure containing microcracks at phase interfaces were characterized by concrete with more content of FA additive in the concrete mix, i.e., 15%. Nevertheless, all concretes made on quaternary binders had better parameters than the reference one. It can be stated that sustainable concrete incorporating pozzolanic materials could be good substitute of ordinary concretes.

Mixture-Proportioning Model for Low-CO2 Concrete Considering the Type and Addition Level of Supplementary Cementitious Materials (혼화재 종류 및 치환율을 고려한 저탄소 콘크리트 배합설계 모델)

  • Jung, Yeon-Back;Yang, Keun-Hyeok
    • Journal of the Korea Concrete Institute
    • /
    • v.27 no.4
    • /
    • pp.427-434
    • /
    • 2015
  • The objective of this study is to establish an rational mixture-proportioning procedure for low-$CO_2$ concrete using supplementary cementitious materials (SCMs) achieving the targeted $CO_2$ reduction ratio as well as the conventional requirements such as initial slump, air content, and 28-day compressive strength of concrete. To evaluate the effect of SCM level on the $CO_2$ emission and compressive strength of concrete, a total of 12537 data sets were compiled from the available literature and ready-mixed concrete plants. The amount of $CO_2$ emission of concrete was assessed under the system boundary from cradle to concrete production stage at a ready-mixed concrete plant. Based on regression analysis using the established database, simple equations were proposed to determine the mixture proportions of concrete such as the type and level of SCMs, water-to-binder ratio, and fine aggregate-to-total aggregate ratio. Furthermore, the $CO_2$ emissions for a given concrete mixture can be straightforwardly calculated using the proposed equations. Overall, the developed mixture-proportioning procedure is practically useful for determining the initial mixture proportions of low-$CO_2$ concrete in the ready-mixed concrete field.

Effect of curing on alkalinity and strength of cement-mortar incorporating palm oil fuel ash

  • Payam Shafigh;Sumra Yousuf;Belal Alsubari;Zainah Ibrahim
    • Advances in concrete construction
    • /
    • v.15 no.3
    • /
    • pp.191-202
    • /
    • 2023
  • Palm oil fuel ash (POFA) is a newly emerging pozzolanic material having high amount of silica content. Various forms of POFA were used in cement-based materials (CBMs) in replacement of cement in different dosages of low and high volume. Although, there are many researches on POFA to be used in concrete and mortar, however, this material was not practically used in the construction industry. Engineers and designers need to be confident to use any new developed materials by knowing all engineering properties at short and long terms. As durability concern, concrete pH value is one of the most important properties. Portland cement produces are alkaline initially, however, it may be reduced due to aging and its components. It is believed that by incorporation of supplementary cementitious materials in CBMs the pH value reduces due to utilization of Ca(OH)2 in pozzolanic reaction. This study is the first attempts to understand the pH value of mortars containing up to 30% POFA under different curing conditions and its changes with time. The results were also compared with the pH of ground granulated ballast furnace slag (GGBFS) and fly ash (FA) content mortars. In addition, the compressive strength of different mortars under different curing conditions were also studied. The results showed that the pH value of control mix (without cementitious materials) was more than all the blended cement mortars indifferent curing conditions at the same ages. However, there was a reducing trend in the pH value of all mortar mixes containing POFA.

A perspective on the 'Differentiated Curriculum'based on the results of implementing current 'differentiated classes' in mathematics (현행 수준별 수업 분석에 기초한 수준별 교육과정의 성공을 위한 처방)

  • 황혜정
    • Journal of Educational Research in Mathematics
    • /
    • v.8 no.1
    • /
    • pp.183-197
    • /
    • 1998
  • Many schools of the secondary level have been recently carrying out 'differentiated class'based on ability grouping between classed(DC). They are usually consisted of three levels; high level available to enriched course, middle level, and low level available to supplemental course. Phrhaps, almost all of the schools might nave executed DC before 2000 year. To do this, a lots of teachers have to develop differentiated teaching and learning materials for themselves. But, these mateirals are usually consisted of differentiated mathematics not on 'content'but on 'items'. So, for the successful 7th differentiated curriculum, the issues such as teaching and learning methods, materials, and evaluation system should be considered in depth focused on DC. .Decide issues related to DC(for example, mathematical contents, methods, activities, class speed,extra)based not on teachers or experts but on students. .Differentiate teaching and learning mateirals according to DC and develop the materials(including guidelines, supplementary books, multimedia, extra) based not on mathematical items but on mathematical contents. .Introduce new mathematical concepts or laws using not only not only definition and explanation but also concrete examples or problems. .Suggest differentiated diverse projects related to mathematical subjects suitable to enhance students` thinking ability to each class. .Have students to develop projects successfully by collecting, representing, analyzing, and interpreting data through communications in a cooperative learning environment.

  • PDF

Self-Consolidating Concrete Incorporating High Volume of Fly Ash, Slag, and Recycled Asphalt Pavement

  • Mahmoud, Enad;Ibrahim, Ahmed;El-Chabib, Hassan;Patibandla, Varun Chowdary
    • International Journal of Concrete Structures and Materials
    • /
    • v.7 no.2
    • /
    • pp.155-163
    • /
    • 2013
  • The use of sustainable technologies such as supplementary cementitious materials (SCMs), and/or recycled materials is expected to positively affect the performance of concrete mixtures. However, it is imperative to qualify and implement such mixtures in practice, if the required specifications of their intended application are met. This paper presents the results of a laboratory investigation of self-consolidating concrete (SCC) containing sustainable technologies. Twelve mixes were prepared with different combinations of fly ash, slag, and recycled asphalt pavement (RAP). Fresh and hardened concrete properties were measured, as expected the inclusion of the sustainable technologies affected both fresh and hardened concrete properties. Analysis of the experimental data indicated that inclusion of RAP not only reduces the ultimate strength, but it also affected the compressive strength development rate. The addition of RAP to mixes showed a consistent effect, with a drop in strength after 3, 14, and 28 days as the RAP content increased from 0 to 50 %. However, most of the mixes satisfied SCC fresh properties requirements, including mixes with up to 50 % RAP. Moreover, several mixes satisfied compressive strength requirement for pavements and bridges, those mixes included relatively high percentages of SCMs and RAP.