• Title/Summary/Keyword: content scanning

Search Result 1,027, Processing Time 0.026 seconds

Adhesion Properties of Urea-Melamine-Formaldehyde (UMF) Resin with Different Molar Ratios in Bonding High and Low Moisture Content Veneers

  • Xu, Guang-Zhu;Eom, Young-Geun;Lim, Dong-Hyuk;Lee, Byoung-Ho;Kim, Hyun-Joong
    • Journal of the Korean Wood Science and Technology
    • /
    • v.38 no.2
    • /
    • pp.117-123
    • /
    • 2010
  • The objective of this research was executed to investigate the effect of molar ratio of formaldehyde to urea and melamine (F/(U+M)) of urea-melamine-formaldehyde (UMF) resin on bonding high and low moisture content veneers. For that purpose, UMF resin types with 5 different F/(U+M) molar ratios (1.45, 1.65, 1.85, 2.05, and 2.25) synthesized were used in present study. First, their curing behavior was evaluated by differential scanning calorimetry. Second, their adhesion performance in bonding high and low moisture content veneers was evaluated by probe tack and dry and wet shear strength tests. Curing temperature and reaction enthalpy decreased with the increase of F/(U+M) molar ratio. And the dry and wet shear strengthsof plywood manufactured from low moisture content veneers were higher than thoseof plywood manufactured from high moisture content veneers. Also, the maximum initial tack force on the low moisture content veneer was higher than that on the high moisture content veneer.

Deformation Behavior in Compatible Polymer Blends (고분자블렌드에서의 변형거동)

  • 전병철
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 1992.05a
    • /
    • pp.121-121
    • /
    • 1992
  • Deformation behavior of compatible polymer blends was studied using scanning electron, optical, and transmission electron microscopies. Four different compatible systems were employed and charaterized in this investigation : polystyrene(PS) and polyphenylene oxide(PPO), polystyrene(PS) and polyvinlmethylether(PVME), polystyrene(PS) and poly $\alpha$-methylstyrene(P$\alpha$MS). Individual craze and shear deformation zone microstructures were examined by transmission microscopy (TEM). For TEM observations, specimens deformed in-situ on a TEM grid were utilized. Quantiative analysis of these crazes and shear deformation zones was obtained from the nicrodensitometry of the TEM negatives in the manner developed by Lauterwasser and Kramer. Microdensitometry resulys showed that the fibril extension ratio decreased as the PPO content increased in the PS/PPO blends, and finally, for 100% PPO, only shear deformation zones were observed. For the PS/PVME blends, the ribril extension ratio also decreased as the VME content increased. For the PS/P$\alpha$MS blends, the fibril extension ratio increased as the P$\alpha$MS content increased, For the PPO/P$\alpha$MS blends, the fibril extension ratio increased as the P$\alpha$MS content increased.

  • PDF

Freezing Behaviors of Frozen Foods Determined by $^1H$ NMR and DSC

  • Lee, Su-Yong;Moon, Se-Hun;Shim, Jae-Yong;Kim, Yong-Ro
    • Food Science and Biotechnology
    • /
    • v.17 no.1
    • /
    • pp.102-105
    • /
    • 2008
  • The freezing patterns of commercial frozen foods were characterized by using proton nuclear magnetic resonance ($^1H$ NMR) relaxometry and differential scanning calorimetry (DSC). The liquid-like components like unfrozen water were investigated as a function of temperature (10 to $-40^{\circ}C$) and then compared with the unfrozen water content measured by DSC. The formation of ice crystals and the reduction of water in the foods during freezing were readily observed as a loss of the NMR signal intensity. The proton NMR relaxation measurement showed that the decreasing pattern of the liquid-like components varied depending on the samples even though they exhibited the same onset temperature of ice formation at around $0^{\circ}C$. When compared with the unfrozen water content obtained by the DSC, the NMR and DSC results could be closely correlated at the temperature above $-20^{\circ}C$. However, the distinct divergence in the values between 2 methods was observed with further decreasing temperatures probably due to the solid glass formation which was not detected by DSC.

A Novel Scalable and Storage-Efficient Architecture for High Speed Exact String Matching

  • Peiravi, Ali;Rahimzadeh, Mohammad Javad
    • ETRI Journal
    • /
    • v.31 no.5
    • /
    • pp.545-553
    • /
    • 2009
  • String matching is a fundamental element of an important category of modern packet processing applications which involve scanning the content flowing through a network for thousands of strings at the line rate. To keep pace with high network speeds, specialized hardware-based solutions are needed which should be efficient enough to maintain scalability in terms of speed and the number of strings. In this paper, a novel architecture based upon a recently proposed data structure called the Bloomier filter is proposed which can successfully support scalability. The Bloomier filter is a compact data structure for encoding arbitrary functions, and it supports approximate evaluation queries. By eliminating the Bloomier filter's false positives in a space efficient way, a simple yet powerful exact string matching architecture is proposed that can handle several thousand strings at high rates and is amenable to on-chip realization. The proposed scheme is implemented in reconfigurable hardware and we compare it with existing solutions. The results show that the proposed approach achieves better performance compared to other existing architectures measured in terms of throughput per logic cells per character as a metric.

Estimation of Machinability of Lead Brass Based on In-Situ Observation in Scanning Electron Microscope (전자현미경 In-Situ 관찰방법을 이용한 황동의 절삭성평가)

  • Jung, Seung-Boo;Lim, Ok-Dong;An, Seong-Uk
    • Applied Microscopy
    • /
    • v.24 no.3
    • /
    • pp.87-93
    • /
    • 1994
  • In order to elucidate the machinability of lead brass, orthogonal machining experiment was conducted in SEM(Scanning Electron Microscope) equipped with a micro-machining device at a cutting speed of $7{\mu}m/s$ for brass containing 0.2 to 3wt% Pb. The microfactors (i.e., shear angle, contact length between chip and tool) were determined by in-situ observations. Machinability of brass containing lead is discussed in terms of the microfactors and the cutting resistant force tested by lathe cutting. The dynamic behavior of the chip formation of lead brass during the machining process was examined: The chips of lead brass form as a shear angle type. The shear angle increases with the content of lead in (6:4) brass. The pronounced effect of lead on the contact length between chip and tool was observed above 1% Pb. The cutting resistant force tested by lathe decreases remarkably with the lead content in brass. The observed microfactors are in close relation to the tested resistant force in macromachining.

  • PDF

Use of OSMI(Ocean Scanning Multi-spectral Imager) Wave Bands for Agricultural Applications

  • Hong, Suk-Young;Rim, Sang-Kyu;Jung, Won-Kyo
    • Proceedings of the KSRS Conference
    • /
    • 1999.11a
    • /
    • pp.396-402
    • /
    • 1999
  • The aim of this study is to assess the OSMI (Ocean Scanning Multi-spectral Imager), whose central bands are 443nm, 490nm, 510nm, 555nm, 670nm, and 865nm, for agricultural applications. Radiance measurements, used to determine per cent reflectance of canopies and soils, were acquired with spectro-radiometers (Li-1800;330~1,100nm, GER-SFOV;350 ~2,500nm, and MSR-7000; 300~2,500nm) in situ for crops and indoors for soils. OSMI equivalent bands and their ratio values were prepared(20nm interval for bands 1~5; 4nm interval for band 6) by averaging spectral reflectance values to the real OSMI bands and analyzed as to crop growth parameters, leaf area index (LAI), total dry matter, and growth index in crops and physiochemical properties in soils. Spectral variations for each growth stage in rice and for crop discrimination in upland crops were significant statistically. In soils, clay and water content, CEC (Cation Exchange Capacity), free iron oxide, and some cation content were correlated with the OSMI equivalent bands. The result of this study shows OSMI wave bands would be promising for agricultural application in terms of spectral information and resolution.

  • PDF

Thermal Properties of Poly(trimethylene terephthalate)/ Poly(ethylene terephthalate) Melt Blends

  • Son, Tae Won;Kim, Kwang Il;Kim, Nam Hun;Jeong, Min Gi;Kim, Young Hun
    • Fibers and Polymers
    • /
    • v.4 no.1
    • /
    • pp.20-26
    • /
    • 2003
  • The thermal behavior, morphology, ester-interchange reaction of Poly(trimethylene terephthalate) (PTT)/poly(ethylene terephthalate) (PET) melt blends were investigated over the whole composition range(xPTT/(1-x)PET) using a twinscrew Brabender. The melt blends were analyzed by differential scanning calorimetry (DSC), nuclear magnetic resonance spectroscopy ($^{13}{C-NMR}$), and scanning electron microscopy (SEM). Single glass transition temperature ($T_g$) and cold crystallization temperature ($T_cc$) were observed in all melt blends. Melt blends were found to be due to the ester-interchange reaction in PTT/PET blend. Also the randomness of copolymer increases because transesterification between PT and PET increases with increasing blending time This reaction increases homogeneity of the blends and decreases the degree of crystallinity of the melt blends. In PTT-rich blends, mechanical properties decrease with increase of PET content compared with that of pure PTT. And, in PET-rich blends, tensile modulus decreases with increase of PTT content, but tensile strength and elongation is similar to that of pure PET.

Mechanical Properties of Papers Prepared from Hardwood KP and Bacterial Cellulose (활엽수크라프트펄프 및 박테리아 셀룰로오스부터 제조한 종이의 물성)

  • 조남석;김영신;박종문;민두식;안드레레오노비치
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.29 no.4
    • /
    • pp.53-63
    • /
    • 1997
  • Most cellulose resources come from the higher plants, but bacteria also synthesize same cellulose as in plants. Many scientists have been widely studied on the bacterial cellulose, the process development, manufacturing, even marketing of cellulose fibers. The bacterial celluloses are very different in its physical and morphological structures. These fibers have many unique properties that are potentially and commercially beneficial. The fine fibers can produce a smooth paper with enchanced its strength property. But there gave been few reports on the mechanical properties of the processing of bacterial cellulose into structural materials. This study were performed to elucidate the mechanical properties of sheets prepared from bacterial cellulose. Also reinforcing effect of bacterial cellulose on the conventional pulp paper as well as surface structures by scanning electron microscopy were discussed. Paper made from bacterial cellulose is 10 times much stronger than ordinary chemical pulp sheet, and the mixing of bacterial cellulose has a remarkable reinforcing effect on the papers. Mechanical strengthes were increased with the increase of bacterial cellulose content in the sheet. This strength increase corresponds to the increasing water retention value and sheet density with the increase of bacterial cellulose content. Scanning electron micrographs were shown that fine microfibrills of bacterial celluloses covered on the surfaces of hardwood pulp fibers, and enhanced sheet strength by its intimate fiber bonding.

  • PDF

Comparison of Gelatinization Properties of Japonica and Tongil Brown Rice Starches (일반계와 통일계 현미전분의 호화성질 비교)

  • 변기원
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.21 no.4
    • /
    • pp.428-435
    • /
    • 1992
  • Intrinsic viscosity and gelatinization properties of brown rice starches of Japonica and Tonsil type cultivars were investigated. The intrinsic viscosity was similar between the two cultivars. The gelatinization temperature of Japonica brown rice starch determined by differential scanning calorimetry was higher than that of Tonsil brown rice starch. However, the range of gelatinization temperature, gelatinization enthalpy and the water content for gelatinization were similar between the two starches. The treatment of starch at 6$0^{\circ}C$ for 24hr increased the gelatinization temperature and gelatinization enthalpy and decreased the range of geltinization temperature. The water content for gelatinization was negatively correlated with the range of gelatinization temperature in case of Japonica starch and with the intrinsic viscosity in case of Tonsil one. The in-trinsic viscosities of both Japonica and Tonsil starches were positively correlated with gelatinization enthalpy.

  • PDF

Effect of bound water on mechanical properties of typical subgrade soils in southern China

  • Ding, Le;Zhang, Junhui;Deng, Zonghuang
    • Geomechanics and Engineering
    • /
    • v.27 no.6
    • /
    • pp.573-582
    • /
    • 2021
  • From the effect of bound water, this study aims to seek the potential reasons for difference of mechanical experiment results of subgrades soils. To attain the comparatively test condition of bound water, dry forming (DF) and wet forming (WF) were used in the specimen forming process before testing, series of laboratory tests, i.e., CBR tests, direct shear tests and compaction tests. The measured optimal moisture contents, maximum dry densities, CBR, cohesion c, and internal friction angle 𝜑 were given contrastive analysis. Then to detect the adsorptive bound water in the subgrade soils, the thermal gravimetric and differential scanning calorimetry (TG-DSC) test were employed under different heating rates. The free water, loosely bound water and tightly bound water in soils were qualitatively and quantitatively analyzed. It was found that due to the different dehydration mechanics, the lost bound water in DF and WF process show their own characteristics. This may lead to the different mechanical properties of tested soils. The clayey particles have a great influence on the bound water adsorbed ability of subgrade soils. The more the clay content, the greater the difference of mechanical properties tested between the two forming methods. Moreover, in highway construction of southern China, the wet forming method is recommended for its higher authenticity in simulating the subgrade filed humidity.