• Title/Summary/Keyword: content based image retrieval

Search Result 448, Processing Time 0.026 seconds

Region-based Content Retrieval Algorithm Using Image Segmentation (영상 분할을 이용한 영역기반 내용 검색 알고리즘)

  • Rhee, Kang-Hyeon
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.44 no.5
    • /
    • pp.1-11
    • /
    • 2007
  • As the availability of an image information has been significantly increasing, necessity of system that can manage an image information is increasing. Accordingly, we proposed the region-based content retrieval(CBIR) algorithm based on an efficient combination of an image segmentation, an image texture, a color feature and an image's shape and position information. As a color feature, a HSI color histogram is chosen which is known to measure spatial of colors well. We used active contour and CWT(complex wavelet transform) to perform an image segmentation and extracting an image texture. And shape and position information are obtained using Hu invariant moments in the luminance of HSI model. For efficient similarity computation, the extracted features(color histogram, Hu invariant moments, and complex wavelet transform) are combined and then precision and recall are measured. As a experimental result using DB that was supported by www.freefoto.com. the proposed image retrieval engine have 94.8% precision, 82.7% recall and can apply successfully image retrieval system.

Content-Based Image Retrieval using RBF Neural Network (RBF 신경망을 이용한 내용 기반 영상 검색)

  • Lee, Hyoung-K;Yoo, Suk-I
    • Journal of KIISE:Software and Applications
    • /
    • v.29 no.3
    • /
    • pp.145-155
    • /
    • 2002
  • In content-based image retrieval (CBIR), most conventional approaches assume a linear relationship between different features and require users themselves to assign the appropriate weights to each feature. However, the linear relationship assumed between the features is too restricted to accurately represent high-level concepts and the intricacies of human perception. In this paper, a neural network-based image retrieval (NNIR) model is proposed. It has been developed based on a human-computer interaction approach to CBIR using a radial basis function network (RBFN). By using the RBFN, this approach determines the nonlinear relationship between features and it allows the user to select an initial query image and search incrementally the target images via relevance feedback so that more accurate similarity comparison between images can be supported. The experiment was performed to calculate the level of recall and precision based on a database that contains 1,015 images and consists of 145 classes. The experimental results showed that the recall and level of the proposed approach were 93.45% and 80.61% respectively, which is superior than precision the existing approaches such as the linearly combining approach, the rank-based method, and the backpropagation algorithm-based method.

Content Based Image Retrieval System using Histogram Intersection and Autocorrelogram (히스토그램 인터섹션과 오토코릴로그램을 이용한 내용기반 영상검색 시스템)

  • 송석진;김효성;이희봉;남기곤
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.3 no.1
    • /
    • pp.1-7
    • /
    • 2002
  • In this paper, when users choose a query image, we implemented a content-based image retrieval system that users can simply choose and extract a object region of query wanted with not only a whole image but various objects in it. Histogram is obtained by improved HSV transformations from query image and then candidate images are retrieved rapidly by a 1st similarity measure with histogram intersection using representative colors of query image. And finally retrieved images are extracted since 2nd similarity measure with banded autocorrelogram is performed so that recall and precision are improved by combining two retrieval methods that can make up for respective weak points. Moreover images in the database are indexed automatically within feature library that makes possible to retrieve images rapidly.

  • PDF

A Content-Based Image Retrieval Technique Using the Shape and Color Features of Objects (객체의 모양과 색상특징을 이용한 내용기반 영상검색 기법)

  • 박종현;박순영;오일환
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.24 no.10B
    • /
    • pp.1902-1911
    • /
    • 1999
  • In this paper we present a content-based image retrieval algorithm using the visual feature vectors which describe the spatial characteristics of objects. The proposed technique uses the Gaussian mixture model(GMM) to represent multi-colored objects and the expectation maximization(EM) algorithm is employed to estimate the maximum likelihood(ML) parameters of the model. After image segmentation is performed based on GMM, the shape and color features are extracted from each object using Fourier descriptors and color histograms, respectively. Image retrieval consists of two steps: first, the shape-based query is carried out to find the candidate images whose objects have the similar shapes with the query image and second, the color-based query is followed. The experimental results show that the proposed algorithm is effective in image retrieving by using the spatial and visual features of segmented objects.

  • PDF

A Novel Morphological Characteristic Value Extraction Method for Content-Based Image Retrieval (내용 기반 이미지 검색을 위한 새로운 수리형태학적 특징값 추출 방법)

  • Eo, Jin-Woo;Lee, Dong-Jin
    • Journal of IKEEE
    • /
    • v.7 no.2 s.13
    • /
    • pp.210-217
    • /
    • 2003
  • A novel characteristic value extraction method based on mathematical morphology is proposed. Morphological spatial frequency defined by morphological pattern distribution function is introduced and applied to define a new feature called ‘average height.' The average height is used to define a characteristic value which is to be used to generate an index key value for content-based image retrieval. Superiority of the method was proved for various images by experiment. Furthermore the fact that the proposed method does not need threshold to obtain binary image provides its applicability to content-based image retrieval.

  • PDF

Content-Based Ultrasound Image Retrieval Using Magnitude frequency Spectrum (주파수 크기 스펙트럼을 이용한 내용기반 초음파 영상검색)

  • 손재곤;김상현;김남철
    • Proceedings of the IEEK Conference
    • /
    • 2000.09a
    • /
    • pp.371-374
    • /
    • 2000
  • We propose an efficient method for content-based ultrasound image retrieval using magnitude frequency spectra and implement a retrieval system based on the proposed method. The target images are ultrasound images of adult organs. Trained users often acquire such images so that images of the same kind of organs are very similar, although their locations may not exactly coincide. Therefore, the magnitude frequency spectrum, which has a translation-invariant property, is used as a feature. All the object images in the image DB is pre-classified in the same kind organs. Experimental results show that the proposed method is superior to some well-known conventional methods.

  • PDF

The Content-based Image Retrieval by Using Variable Block Size and Block Matching Algorithm (가변 블록 크기와 블록 매칭 알고리즘의 조합에 의한 내용기반 화상 검색)

  • Kang, Hyun-Inn;Baek, Kwang-Ryul
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.35S no.8
    • /
    • pp.47-54
    • /
    • 1998
  • With the increasing popularity of the use of large-volume image database in various application, it becomes imperative to build an efficient and fast retrieval system to browse through the entire database. We present a new method for a content-based image retrieval by using a variable block size and block matching algorithm. Proposed approach is reflecting image features that exploit visual cues such as color and space allocation of image and is getting the fast retrieval time by automatical convergence of retrieval times which adapt to wanting similarity value. We have implemented this technique and tested it for a database of approximately 150 images. The test shows that a 1.9 times fast retrieval time compare to J & V algorithm at the image retrieval efficiency 0.65 and that a 1.83 times fast retrieval time compare to predefined fixed block size.

  • PDF

Image Retrieval Using Color Correlogram from a Segmented Image (분할된 영상에서의 칼라 코렐로그램을 이용한 영상검색)

  • 안명석;조석제
    • Proceedings of the Korea Institute of Convergence Signal Processing
    • /
    • 2000.12a
    • /
    • pp.153-156
    • /
    • 2000
  • Recently, there has been studied on feature extraction method for efficient content-based image retrieval. Especially, Many researchers have been studying on extracting feature from color Information, because of its advantages. This paper proposes a feature and its extraction method based on color correlogram that is extracted from color information in an image. the proposed method is computed from the image segmented into two parts; the complex part and the plain part. Our experiments show that the performance of the proposed method is better as compared with that of the original color correlogram method.

  • PDF

Image Retrieval Using Texture Features BDIP and BVLC (BDIP와 BVCL의 질감특징을 이용한 영상검색)

  • 천영덕;서상용;김남철
    • Proceedings of the IEEK Conference
    • /
    • 2001.09a
    • /
    • pp.183-186
    • /
    • 2001
  • In this paper, we first propose new texture features, BVLC (block variation of local correlation coefficients) moments, for content-based image retrieval (CBIR) and then present an image retrieval method based on the fusion of BDIP and BVLC moments. BDIP uses the local probabilities in image blocks to extract valley and edges well. BVLC uses the variations of local correlation coefficients in images blocks to measure texture smoothness well. In order not to be affected with the movement, rotation, and size of an object, the first and second moments of BDIP and BVLC are used for CBIR. Corel DB and Vistex DB are used to evaluate the performance of the proposed retrieval method. Experimental results show that the presented retrieval method yields average 12% better performance than the method using only BDIP or BVLC moments and average 13% better performance than the method using wavelet moments.

  • PDF

Patent Image Retrieval Using SURF Direction histograms (SURF 방향 히스토그램을 이용한 특허 영상 검색)

  • Yoo, Ju-Hee;Lee, Kyoung-Mi
    • Journal of KIISE
    • /
    • v.42 no.1
    • /
    • pp.33-43
    • /
    • 2015
  • Recently, patent images are growing importance and thus patent image retrieval is a growing area of research. However, most existing patent image retrieval systems use edges extracted in the images, whose performance is affected by the quality of edge detection in the image pre-processing step. To overcome this disadvantage, we propose a SURF-based patent image retrieval method which uses the morphological characteristics of the images. The proposed method detects SURF interest points with directions and computes regional histograms. We apply the proposed method to a patent image database with 2000 binary images and we show the proposed retrieval system achieves excellent results, even when the images have some loss or degradation.