Journal of the Institute of Electronics Engineers of Korea CI
/
v.44
no.5
/
pp.1-11
/
2007
As the availability of an image information has been significantly increasing, necessity of system that can manage an image information is increasing. Accordingly, we proposed the region-based content retrieval(CBIR) algorithm based on an efficient combination of an image segmentation, an image texture, a color feature and an image's shape and position information. As a color feature, a HSI color histogram is chosen which is known to measure spatial of colors well. We used active contour and CWT(complex wavelet transform) to perform an image segmentation and extracting an image texture. And shape and position information are obtained using Hu invariant moments in the luminance of HSI model. For efficient similarity computation, the extracted features(color histogram, Hu invariant moments, and complex wavelet transform) are combined and then precision and recall are measured. As a experimental result using DB that was supported by www.freefoto.com. the proposed image retrieval engine have 94.8% precision, 82.7% recall and can apply successfully image retrieval system.
In content-based image retrieval (CBIR), most conventional approaches assume a linear relationship between different features and require users themselves to assign the appropriate weights to each feature. However, the linear relationship assumed between the features is too restricted to accurately represent high-level concepts and the intricacies of human perception. In this paper, a neural network-based image retrieval (NNIR) model is proposed. It has been developed based on a human-computer interaction approach to CBIR using a radial basis function network (RBFN). By using the RBFN, this approach determines the nonlinear relationship between features and it allows the user to select an initial query image and search incrementally the target images via relevance feedback so that more accurate similarity comparison between images can be supported. The experiment was performed to calculate the level of recall and precision based on a database that contains 1,015 images and consists of 145 classes. The experimental results showed that the recall and level of the proposed approach were 93.45% and 80.61% respectively, which is superior than precision the existing approaches such as the linearly combining approach, the rank-based method, and the backpropagation algorithm-based method.
Journal of the Institute of Convergence Signal Processing
/
v.3
no.1
/
pp.1-7
/
2002
In this paper, when users choose a query image, we implemented a content-based image retrieval system that users can simply choose and extract a object region of query wanted with not only a whole image but various objects in it. Histogram is obtained by improved HSV transformations from query image and then candidate images are retrieved rapidly by a 1st similarity measure with histogram intersection using representative colors of query image. And finally retrieved images are extracted since 2nd similarity measure with banded autocorrelogram is performed so that recall and precision are improved by combining two retrieval methods that can make up for respective weak points. Moreover images in the database are indexed automatically within feature library that makes possible to retrieve images rapidly.
The Journal of Korean Institute of Communications and Information Sciences
/
v.24
no.10B
/
pp.1902-1911
/
1999
In this paper we present a content-based image retrieval algorithm using the visual feature vectors which describe the spatial characteristics of objects. The proposed technique uses the Gaussian mixture model(GMM) to represent multi-colored objects and the expectation maximization(EM) algorithm is employed to estimate the maximum likelihood(ML) parameters of the model. After image segmentation is performed based on GMM, the shape and color features are extracted from each object using Fourier descriptors and color histograms, respectively. Image retrieval consists of two steps: first, the shape-based query is carried out to find the candidate images whose objects have the similar shapes with the query image and second, the color-based query is followed. The experimental results show that the proposed algorithm is effective in image retrieving by using the spatial and visual features of segmented objects.
A novel characteristic value extraction method based on mathematical morphology is proposed. Morphological spatial frequency defined by morphological pattern distribution function is introduced and applied to define a new feature called ‘average height.' The average height is used to define a characteristic value which is to be used to generate an index key value for content-based image retrieval. Superiority of the method was proved for various images by experiment. Furthermore the fact that the proposed method does not need threshold to obtain binary image provides its applicability to content-based image retrieval.
We propose an efficient method for content-based ultrasound image retrieval using magnitude frequency spectra and implement a retrieval system based on the proposed method. The target images are ultrasound images of adult organs. Trained users often acquire such images so that images of the same kind of organs are very similar, although their locations may not exactly coincide. Therefore, the magnitude frequency spectrum, which has a translation-invariant property, is used as a feature. All the object images in the image DB is pre-classified in the same kind organs. Experimental results show that the proposed method is superior to some well-known conventional methods.
Journal of the Korean Institute of Telematics and Electronics S
/
v.35S
no.8
/
pp.47-54
/
1998
With the increasing popularity of the use of large-volume image database in various application, it becomes imperative to build an efficient and fast retrieval system to browse through the entire database. We present a new method for a content-based image retrieval by using a variable block size and block matching algorithm. Proposed approach is reflecting image features that exploit visual cues such as color and space allocation of image and is getting the fast retrieval time by automatical convergence of retrieval times which adapt to wanting similarity value. We have implemented this technique and tested it for a database of approximately 150 images. The test shows that a 1.9 times fast retrieval time compare to J & V algorithm at the image retrieval efficiency 0.65 and that a 1.83 times fast retrieval time compare to predefined fixed block size.
Proceedings of the Korea Institute of Convergence Signal Processing
/
2000.12a
/
pp.153-156
/
2000
Recently, there has been studied on feature extraction method for efficient content-based image retrieval. Especially, Many researchers have been studying on extracting feature from color Information, because of its advantages. This paper proposes a feature and its extraction method based on color correlogram that is extracted from color information in an image. the proposed method is computed from the image segmented into two parts; the complex part and the plain part. Our experiments show that the performance of the proposed method is better as compared with that of the original color correlogram method.
In this paper, we first propose new texture features, BVLC (block variation of local correlation coefficients) moments, for content-based image retrieval (CBIR) and then present an image retrieval method based on the fusion of BDIP and BVLC moments. BDIP uses the local probabilities in image blocks to extract valley and edges well. BVLC uses the variations of local correlation coefficients in images blocks to measure texture smoothness well. In order not to be affected with the movement, rotation, and size of an object, the first and second moments of BDIP and BVLC are used for CBIR. Corel DB and Vistex DB are used to evaluate the performance of the proposed retrieval method. Experimental results show that the presented retrieval method yields average 12% better performance than the method using only BDIP or BVLC moments and average 13% better performance than the method using wavelet moments.
Recently, patent images are growing importance and thus patent image retrieval is a growing area of research. However, most existing patent image retrieval systems use edges extracted in the images, whose performance is affected by the quality of edge detection in the image pre-processing step. To overcome this disadvantage, we propose a SURF-based patent image retrieval method which uses the morphological characteristics of the images. The proposed method detects SURF interest points with directions and computes regional histograms. We apply the proposed method to a patent image database with 2000 binary images and we show the proposed retrieval system achieves excellent results, even when the images have some loss or degradation.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.