• Title/Summary/Keyword: contaminated water

Search Result 1,316, Processing Time 0.037 seconds

Sorption Efficiency of the Bamboo Charcoal to Remove the Cesium in the Contaminated Water System (오염수계 내 세슘 제거를 위한 대나무 활성탄의 흡착효율 규명)

  • Ahn, Joungpil;Lee, Minhee
    • Economic and Environmental Geology
    • /
    • v.51 no.2
    • /
    • pp.87-97
    • /
    • 2018
  • The cesium (Cs) removal from the contaminated water system has been considered to be difficult because the cesium likes to exist as soluble phases such as ion and complexes than the solid in water system. Many researches have focused on developing the breakthrough adsorbent to increase the cesium removal efficiency in water. In this study, the laboratory scale experiments were performed to investigate the feasibility of the adsorption process using the bamboo charcoal for the Cs contaminated water system. The Cs removal efficiency of the bamboo charcoal were measured and the optimal adsorption conditions were determined by the adsorption batch experiments. Total 5 types of commercialized bamboo charcoals in Korea were used to identify their surface properties from SEM-EDS and XRD analyses and 3 types of bamboo charcoals having large specific surface areas were used for the adsorption batch experiment. The batch experiments to calculate the Cs removal efficiency were performed at conditions of various Cs concentration (0.01 - 10 mg/L), pH (3 - 11), temperature ($5-30^{\circ}C$), and adsorption time (10 - 120 min.). Experimental results were fitted to the Langmuir adsorption isotherm curve and their adsorption constants were determined to understand the adsorption properties of bamboo charcoal for Cs contaminated water system. From results of SEM-EDS analyses, the surfaces of bamboo charcoal particles were composed of typical fiber structures having various pores and dense lamella structures in supporting major adsorption spaces for Cs. From results of adsorption batch experiments, the Cs-133 removal efficiency of C type bamboo charcoal was the highest among those of 3 bamboo charcoal types and it was higher than 75 % (maximum of 82 %) even when the initial Cs concentration in water was lower than 1.0 mg/L, suggesting that the adsorption process using the bamboo charcoal has a great potential to remove Cs from the genuine Cs contaminated water, of which Cs concentration is low (< 1.0 mg/L) in general. The high Cs removal efficiency of bamboo charcoal was maintained in a relatively wide range of temperatures and pHs, supporting that the usage of the bamboo charcoal is feasible for various types of water. Experimental results were similar to the Langmuir adsorption model and the maximum amount of Cs adsorption (qm:mg/g) was 63.4 mg/g, which was higher than those of commercialized adsorbents used in previous studies. The surface coverage (${\theta}$) of bamboo charcoal was also maintained in low when the Cs concentration in water was < 1.0 mg/L, investigating that the Cs contaminated water can be remediated up with a small amount of bamboo charcoal.

A Study on the Isolation of the Oil-degradation Microbes and Treatment Efficiency in the Oil Contaminated Soil with Peat Moss (유류오염토양에서 유류분해 미생물의 분리 및 peat moss를 이용한 오염토양 처리에 관한 연구)

  • Chun, Mi-Hee;Son, Hee-Jeong;Kim, Chul
    • Journal of Environmental Health Sciences
    • /
    • v.33 no.5
    • /
    • pp.462-469
    • /
    • 2007
  • Isolation and application of oil-degradation microbes from the oil-contaminated soil and the determination of optimal operation conditions about the peat moss, the addition for the oil-biodegradation. After all experiments, we have acquired three important conclusions: First, we found out the 4 microbes, Pseudomonas fluorescens, Pseudomonas aeruinosa, Kurtia sp., Bacillus ceres, with excellent capability for the oil-degradation; Second, the optimal operating conditions of the peat moss for TPH treatment were pH $7{\sim}8$, temperature $25{\sim}30^{\circ}C$, water content 20%, mixing 2 times/ day, addition volume 2%; Third, in case of the application to the oil-contaminated soil with 4 mixed microbes, the removal efficiency of TPH was increased from 54% to 83% in oil-contaminated soil and from 65% to 85% in oil-contaminated soil with the peat moss.

A study on the Tracking Characteristics of Contaminated Insulating Materials of RCD (오염된 누전차단기 절연재료의 트래킹 특성에 관한 연구)

  • Lee, Chun-Ha;Ok, Kyung-Jae;Kim, Shi-Kuk;Jee, Seung-Wook
    • Fire Science and Engineering
    • /
    • v.22 no.5
    • /
    • pp.67-71
    • /
    • 2008
  • This experimental study showed the tracking characteristics of contaminated insulating materials of RCD. Electrolytes is made by IEC(International Electrotechnical Commission) 60589, NaCl added to deionized water as each 0.1 wt%. The used test equipment is application to KS(Korean Industrial Standard) C IEC 60112. The used samples is RCD(Residual Current Device) of tree companies. It is investigated carbonic electric conductive pass growth time and tracking growth form that contaminated insulators materials of RCD. As a result, carbonic electric conductive pass growth time and tracking growth form was different each companies. Track growth time of contaminated insulating materials was faster than non-contaminated.

Influence of Cu(II) on the Growth of Korean Tadpole, Rana nigromaculata (銅이온이 참개구리 幼生의 成長에 미치는 影響)

  • Park, Sang Ock;Sang Gi Kim;Soo Yeul Cho
    • The Korean Journal of Ecology
    • /
    • v.7 no.4
    • /
    • pp.232-238
    • /
    • 1984
  • The author hatched the eggs of Korean frog, Rana nigromaculata in natural water, and reared the tadpoles in natural water as control group and in seven copper ion groups contaminated by 0.1, 0.2, 0.3, 0.4, 0.5, 0.7, and 1.0 ppm of copper ion. The influences of copper ion on the growth of the tadpoles were analyzed, and the results were summarized as follows: 1) The copper ion inhibited the growth of the tadpole. 2) The tadpoles were not survived for 20 days in the copper ion of 0.4~0.5ppm, and in the 0.7ppm, the tadpoles were not survived for 1 day after hatch. 3) The critical lethal concentration of Korean tadpole is regarded as 0.6ppm of copper ion. 4) The growth of head with and body length show a convexin increase pattern. 5) In the growth quantity of head width and body length, that of natural water shows the most rapid increase pattern, and that of the copper ion groups 0.1, 0.2, and 0.3ppm follows in that order. 6) The coefficient of relative growth($\alpha$) of control group is the greatest value, and that of the copper ion groups of 0.1, 0.2, and 0.3ppm follows in that order. The natural water shows the positive allometry, the contaminated groups shows the negative allometry in the relative growth of the contaminated groups to the natural water. 7) Body length shows positive allometry in the relative growth to head width.

  • PDF

Permeation of Organic Chemicals through Gasketed Cast Iron Pipe (주물 파이프 Gasket을 통한 유기화학물질의 이동)

  • Yong-Chan Seo;Nack-Joo Kim
    • Journal of Environmental Science International
    • /
    • v.8 no.1
    • /
    • pp.45-50
    • /
    • 1999
  • Four cast iron pipe sections containing 3 styrene butadiene rubber (SBR) gaskets (1 joint and 2 end caps) were filled with water and maintained at approximately 40 psi internal pressure. The pipe sections were placed inside 16 gallon drums filled with initially clean sand. Three of the tanks were subsequently contaminated with gasoline, gasoline spiked with pyrene and naphthalene, and toluene. The forth tank served as a control. The water inside each pipe was monitored over time for organic chemical contamination. Permeation of organic chemicals into the water inside the pipe systems was found to occur in all 3 contaminated pipe systems after approximately 100 days as measured organic chemicals concentrations were significantly above those in the uncontaminated cell. Flushing experiments in which the water inside the contaminated pipes was replaced with initially clean water showed that organic chemical concentrations inside the pipe rapidly (12 days) reached their preflushing levels.

  • PDF

Decomposition of Thickener in Grease by Water Contamination (수분오염에 따른 그리스 내 증주제 분해 연구)

  • Lim, Young-Kwan;Ham, Song-Yee;Lee, Joung-Min;Jeong, Choong-Sub
    • Tribology and Lubricants
    • /
    • v.28 no.1
    • /
    • pp.33-37
    • /
    • 2012
  • Automotive wheel bearing grease helps to reduce stresses and prevent wear of wheel bearings. But it is easily contaminated by water and other contaminants. Previously, our research group reported the change of grease physical properties such as dropping point, work penetration and oxidation work stability, water washout characteristics, leakage tendency, oil separation, evaporation loss and rust protection by water contamination. In this paper, we analyzed the physical characteristics of grease such as lubricity, viscosity and total acid number to investigate the mechanism of thickener decomposition. In water contaminated grease, the total acid number and wear scar were increased, the viscosity was decreased due to the decomposition of lithium complex thickener.

Effectiveness of One- and Dual-Stage Recycled-Water Systems in Slurry Bioreactor Treatment for Coal Tar-Contaminated Soil (콜타르 오염토양의 슬러리상 생물반응기 처리를 위한 일단 및 이단 재순환식 공정의 효율성)

  • NamKoong, Wan;Park, Jin-Hong;Lee, Noh-Sup;Kim, Joung-Dae;Park, Joon-Seok
    • Journal of Environmental Health Sciences
    • /
    • v.31 no.5 s.86
    • /
    • pp.423-430
    • /
    • 2005
  • This research was performed to evaluate the effectiveness of one- and dual-stage recycled-water systems in slurry bioreactor treatment for coal tar-contaminated soil. Silty loam soil was used for this research. Coal tar and 14 target PAHs (Polycyclic Aromatic Hydrocarbons) concentration in the soil were determined with gas chromatography. There was no significant difference between removal efficiencies of one- and dual-stage recycled water systems in case of about 4,000 mg coar tar/kg. However, the dual-stage system increased significantly the removal efficiency in case of about 20,000 mg coar tar/kg and the first-order kinetic constant of the system was over 1.5 times higher than that of one-stage recycled water system. 3-Ring compounds in PAHs was removed completely within 30 days of operation. Coar tar was removed in over 96% through biodegradation and removed in about 4% by evaporation. High correlation coefficient($r^2=0.91$) was found between water solubility and removal efficiency of the cyclic compounds.

A Study on the change of Ecological Environment in Cave cause by the Pollution of Cave Environment and Analysis of Environmental Pollutants in Cave (환경오염으로 인한 동굴생태환경의 변화와 환경오염물질 분석에 관한 연구)

  • 이경호
    • Journal of the Speleological Society of Korea
    • /
    • no.61
    • /
    • pp.5-16
    • /
    • 2000
  • Recently many environmental researcher are concerned about the ecological environment and the issue of environmental pollution in cave. In this paper we discuss about air pollution, water pollution, state of water quality, ecological environment and situation of environmental public damage in cave The concerning of air pollution in cave is mainly to the type of secondary contamination, which much is developed in various fields recently. The natural water in the most of cave is no problems but ground water has slitting with natural water during much raining period. The state of water quality is gradually contaminated with artificial environmental pollution, that is, the contents of kinds of Aluminum, Nickel, Copper, Zinc and Calcium are higher than before. On the other hand it is very important things to keep the control of constant temperature, darkness and humidity in cave. The contamination by lamp flora and even black colored contamination are appeared nowadays. The ecological environment in cave destructed by growing of mi coorganism. In fact the internal of cave is shielded with the state of climate of cave external but the environment of internal cave is contaminated, because blowing from external climate state. In addition to environmental pollution caused by carbon dioxide and body temperature of tourists. By the way eco-examination of cave is black color public damage, green color one and white color one has been discovered, so we need to have the situation of demand of environmental reservation alternatives.

  • PDF

Bioremediation of Phenolic Compounds Having Endocrine-disrupting Activity Using Ozone Oxidation and Activated Sludge Treatment

  • Nakamura, Yoshitoshi;Daidai, Masakazu;Kobayashi, Fumihisa
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.9 no.3
    • /
    • pp.151-155
    • /
    • 2004
  • The bioremediation of water system contaminated with phenolic compounds having endocrine-disrupting activity, i.e. 2,4-dichlorophenol, 2,4-dichlorophenoxy acetic acid (2,4-D), and 2,4,5-trichlorophenoxy acetic acid (2,4,5-T), was investigated by using ozone oxidation and activated sludge treatment. Ozone oxidation (ozonation time: 30 min) followed by activated sludge treatment (incubation time: 5 days) was an efficient treatment method for the conversion of phenolic compounds in water into carbon dioxide and decreased the value of total organic carbon (TOC) up to about 10% of initial value. Furthermore, 2,4-D was dissolved in water containing salt, i.e. artificial seawater (ASW), and this water was used as model coastal water contaminated with phenolic compounds. The activated sludge treatment (incubation time: 5 days) could consume significantly organic acids produced from 2,4-D in the model costal water by the ozone oxidation (ozonation time: 30min) and decrease the value of TOC up to about 35% of initial value.

The Removal of Contaminated Radiostrontium from Mice by Water Soluble Chitosan (카이토산을 이용한 방사성스트론튬 오염의 치료)

  • Bom, Hee-Seung;Kim, Kwang-Yoon;Yang, Kwang-Hee;Chae, Ki-Moon;Choi, Keun-Hee;Song, Ho-Chun;Kim, Ji-Yeul
    • Journal of Radiation Protection and Research
    • /
    • v.19 no.3
    • /
    • pp.230-234
    • /
    • 1994
  • The aim of the present study was to elucidate the effect of the water soluble chitosans on the removal of contaminated radiostrontium (Sr-85) from the bone of mice. The remaining radioactivities in intravenously injected controls(group 1) were higher than in intraperitoneally injected controls (group 4, P<0.01). The % retention at day 5 were $57.7{\pm}1.9%,\;54.4{\pm}1.2%$, respectively. Single intravenous injection of 0.3% water soluble chitosan and continuous oral ingestion of 10% water soluble chitosan for 15 days were' ineffective on the removal of contaminated radiostrontiums. Multiple intravenous or intraperitoneal injections of water soluble chitosan effectively removed contaminated radiostrontiums(P<0.01 vs controls). In conclusion, water soluble chitosan might remove once incorporated radiostrontium from bones of mice. Further studies were needed to elucidate the mechanism of the removal.

  • PDF