• Title/Summary/Keyword: container model

Search Result 812, Processing Time 0.024 seconds

Design of a Container Crane Controller for High Efficiency in Cargo Handling (하역효율 향상을 위한 컨테이너 크레인의 제어기 설계)

  • 신선근;최재준;소명옥;한국해
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.24 no.4
    • /
    • pp.502-508
    • /
    • 2000
  • The amount of container freight is continuously increasing recently, but freight congestion problem frequently occurs at ports due to low efficiency of container crane in transportation and cargo handling. In this paper, a method for designing a fuzzy controller of the container crane system is presented. In this scheme a mathematical model for the system is obtained in state space representation. The response of the proposed fuzzy controller is compared with that of the optimal controller at the same condition. Through the simulation results, the performance of the fuzzy controller was observed better than that of optimal controller in respect of reference change, disturbances and parameter change. The fuzzy controller was also more stable and robust than the optimal controller.

  • PDF

An Estimate of the Required Number of Yard Tractor in Container Terminal (컨테이너터미널의 야드 트랙터 소요대수 추정)

  • Choi, Yong-Seok;Kim, Woo-Sun;Ha, Tae-Young
    • Journal of Navigation and Port Research
    • /
    • v.28 no.6
    • /
    • pp.549-555
    • /
    • 2004
  • The purpose of this study is to estimate the required number of yard tractor on port container terminal. The number of yard tractor is the bottleneck factor on the efficiency of container terminal. Due to the change in travel speed and travel distance, the efficiency is difficult to estimate. The efficiency of yard tractor is estimated by the proposed simulation model that developed considering the queueing network between container crane and transfer crane. The number of yard tractor per container crane is estimated by the alternative analysis. And to determine the number of yard tractor per container crane, the performance measure such as the distance between berth and yard, the speed of yard tractor are simulated.

Comparison of finite element analysis with wind tunnel test on stability of a container crane (컨테이너 크레인의 안정성에 대한 풍동실험과 유한요소해석의 비교)

  • Han, D.S.;Lee, S.W.;Han, G.J.
    • Journal of Power System Engineering
    • /
    • v.12 no.6
    • /
    • pp.29-35
    • /
    • 2008
  • This study is conducted to provide the proper analysis method to evaluate the stability of a container crane under wind load. Two analysis method, namely structure analysis and fluid-structure interaction, are adopted to evaluate the stability of a container crane in this investigation. To evaluate the effect of wind load on the stability of the crane, 50-ton class container crane widely used in container terminals is adopted for analysis model and 19-values are considered for wind direction as design parameter. We conduct structure analysis and fluid-structure interaction for a container crane with respect to the wind direction using ANSYS and CFX. Then we compare the uplift forces yielded from two analysis with it yielded from wind tunnel test. The results are as follows: 1) A correlation coefficient between structure analysis and wind tunnel test is lower than 0.65(as $0.29{\sim}0.57$), but between fluid-structure interaction and wind tunnel test is higher than 0.65(as $0.78{\sim}0.86$). 2) There is low correlation between structure analysis and wind tunnel test but very high correlation between fluid-structure interaction and wind tunnel test.

  • PDF

RESONANT MOTION OF A PARTICLE ON AN AXISYMMETRIC CONTAINER SUBJECT TO HORIZONTAL EXCITATION

  • Suh, Yong-Kweon
    • Journal of Theoretical and Applied Mechanics
    • /
    • v.2 no.1
    • /
    • pp.51-70
    • /
    • 1996
  • This study is generalization of the study of Miles[Physica 11D, 1984, pp.309-323]on the resonant motion of a spherical pendulum, which is equivalent to a particle on a spherical container subject to a linear, horizontal excitation. This study covers an arbitrary shape of container and a more general excitation (horizontal but elliptic motion). The averaging method is applied to reduce the governing equations to an autonomous system with cubic nonlinear terms, under the assumption of small amplitude of the container motion. It is shown that both the container shape and the excitation pattern affect the particle dynamics. Under the linear excitation, the anharmonic motion of the particle is possible only for a certain finite range of the parameter a controling the container shape. Stability of the particle's harmonic motion is also influenced by the excitation pattern; as the excitation trajectory becomes closer to a circle, the particle's motion has a stronger tendency to become stable and to follow the rotational direction of the excitation. Under a circular excitation, the motion is always stable and circular with the same rotational direction as the excitation. Analogy between the present model and that of the surface wave inside a circular is studied quantitatively.

Probabilistic and spectral modelling of dynamic wind effects of quayside container cranes

  • Su, Ning;Peng, Shitao;Hong, Ningning;Wu, Xiaotong;Chen, Yunyue
    • Wind and Structures
    • /
    • v.30 no.4
    • /
    • pp.405-421
    • /
    • 2020
  • Quayside container cranes are important delivery machineries located in the most frontiers of container terminals, where strong wind attacks happen occasionally. Since the previous researches on quayside container cranes mainly focused on the mean wind load and static response characteristics, the fluctuating wind load and dynamic response characteristics require further investigations. In the present study, the aerodynamic wind loads on quayside container cranes were obtained from wind tunnel tests. The probabilistic and spectral models of the fluctuating aerodynamic loads were established. Then the joint probabilistic distributions of dynamic wind-induced responses were derived theoretically based on a series of Gaussian and independent assumption of resonant components. Finally, the results were validated by time domain analysis using wind tunnel data. It is concluded that the assumptions are acceptable. And the presented approach can estimate peak dynamic sliding force, overturning moments and leg uplifts of quayside container cranes effectively and efficiently.

Models for the Empty Container Repositioning and Leasing (공컨테이너 운영 관리를 위한 모형 개발)

  • 하원익;남기찬
    • Journal of the Korean Institute of Navigation
    • /
    • v.23 no.2
    • /
    • pp.11-22
    • /
    • 1999
  • This paper is concerned with the development of a tractable model to assist liner shipping companies in the decision-making of empty container repositioning and leasing. A hybrid methodology is presented which properly accounts for the specific characteristics of empty container management. For this mathematical models are developed based on dynamic network models, covering both land and marine segment. Then a stochastic method is presented to deal with the uncertainty of the future demand and supply. Especially, the concept of opportunity cost has been introduced in order to explain interactions between the variation of the future demand and supply and the stock level at each depot.

  • PDF

자동화 컨테이너 터미널에서의 장치장 운영 시뮬레이션 연구

  • Wang Seung Jin;Kim Gap Hwan;Park Yeong Man;Yang Chang Ho;Kim Yeong Hun;Bae Jong Ok
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2002.05a
    • /
    • pp.974-978
    • /
    • 2002
  • For the efficient operation of container terminals, it is essential to develop optimal operation rules for marshaling yard and yard cranes. However, derision rules for conventional container terminals expose various limitations to be applied to automated container terminals. This paper introduces a development of a simulation model for evaluating various operation rules for automated transfer cranes (ATCs) and yard operation in the marshaling yard.

  • PDF

Movement identification model of port container crane based on structural health monitoring system

  • Kaloop, Mosbeh R.;Sayed, Mohamed A.;Kim, Dookie;Kim, Eunsung
    • Structural Engineering and Mechanics
    • /
    • v.50 no.1
    • /
    • pp.105-119
    • /
    • 2014
  • This study presents a steel container crane movement analysis and assessment based on structural health monitoring (SHM). The accelerometers are used to monitor the dynamic crane behavior and a 3-D finite element model (FEM) was designed to express the static displacement of the crane under the different load cases. The multi-input single-output nonlinear autoregressive neural network with external input (NNARX) model is used to identify the crane dynamic displacements. The FEM analysis and the identification model are used to investigate the safety and the vibration state of the crane in both time and frequency domains. Moreover, the SHM system is used based on the FEM analysis to assess the crane behavior. The analysis results indicate that: (1) the mean relative dynamic displacement can reveal the relative static movement of structures under environmental load; (2) the environmental load conditions clearly affect the crane deformations in different load cases; (3) the crane deformations are shown within the safe limits under different loads.

Global hydroelastic analysis of ultra large container ships by improved beam structural model

  • Senjanovic, Ivo;Vladimir, Nikola;Tomic, Marko;Hadzic, Neven;Malenica, Sime
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.6 no.4
    • /
    • pp.1041-1063
    • /
    • 2014
  • Some results on the hydroelasticity of ultra large container ships related to the beam structural model and restoring stiffness achieved within EU FP7 Project TULCS are summarized. An advanced thin-walled girder theory based on the modified Timoshenko beam theory for flexural vibrations with analogical extension to the torsional problem, is used for formulation of the beam finite element for analysis of coupled horizontal and torsional ship hull vibrations. Special attention is paid to the contribution of transverse bulkheads to the open hull stiffness, as well as to the reduced stiffness of the relatively short engine room structure. In addition two definitions of the restoring stiffness are considered: consistent one, which includes hydrostatic and gravity properties, and unified one with geometric stiffness as structural contribution via calm water stress field. Both formulations are worked out by employing the finite element concept. Complete hydroelastic response of a ULCS is performed by coupling 1D structural model and 3D hydrodynamic model as well as for 3D structural and 3D hydrodynamic model. Also, fatigue of structural elements exposed to high stress concentration is considered.

A Container Orchestration System for Process Workloads

  • Jong-Sub Lee;Seok-Jae Moon
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.15 no.4
    • /
    • pp.270-278
    • /
    • 2023
  • We propose a container orchestration system for process workloads that combines the potential of big data and machine learning technologies to integrate enterprise process-centric workloads. This proposed system analyzes big data generated from industrial automation to identify hidden patterns and build a machine learning prediction model. For each machine learning case, training data is loaded into a data store and preprocessed for model training. In the next step, you can use the training data to select and apply an appropriate model. Then evaluate the model using the following test data: This step is called model construction and can be performed in a deployment framework. Additionally, a visual hierarchy is constructed to display prediction results and facilitate big data analysis. In order to implement parallel computing of PCA in the proposed system, several virtual systems were implemented to build the cluster required for the big data cluster. The implementation for evaluation and analysis built the necessary clusters by creating multiple virtual machines in a big data cluster to implement parallel computation of PCA. The proposed system is modeled as layers of individual components that can be connected together. The advantage of a system is that components can be added, replaced, or reused without affecting the rest of the system.